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In the last lecture we saw that the so-called θ-term

Lθ =
θg2

s
32π2 Ga

µνG̃a µν =
θg2

s
16π2 Tr GµνG̃µν =:

θg2
s

32π2 GG̃. (1)

has to be included in the QCD Lagrangian. The parameter θ has two
contributions:

θ = θQCD + arg det YdYu, (2)

where θQCD is the θ parameter of QCD, while Yu and Yd are up and
down Yukawa matrices respectively. This parameter cannot be elimi-
nated from the Lagrangian. The chiral transformation

q 7→ eiθγ5/2q, (3)

eliminates the GG̃ term due to the chiral anomaly, however explicit
breaking of the axial symmetry by the quark masses yields an extra
contribution to the quark mass term:

qmqq 7→ qmq

(
1 + eiθγ5

)
q. (4)

Additionaly, it can be shown that the electric dipole moment (EDM) of
the neutron is proportional to the θ parameter, thus we can determine
the θ parameter from a potential measurement of the neutron EDM.
This, however is not been observed yet which yields the bound∣∣θ∣∣ ≲ 10−10. (5)

The smallness of this parameter is known as the Strong CP Problem.
In this lecture, we will briefly list possible solutions to this prob-

lem, while concentrating mainly on the by far the most popular one;
namely the axion. We will discuss the axions is a general setting before
studying specific UV completions in the next lecture.

1 Non-axion solutions to the Strong CP problem

Before discussing the axion solution to the Strong CP problem exten-
sively in the next section, let us start by mentioning alternative solu-
tions.
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Massless up quark

Remember that the reason why the θ term cannot be eliminated by a
chiral rotation of the form (3) is the fact that quark masses breaks the
axial symmetry explicitly. Therefore, if only one of the quarks were
massless, then the θ term would be eliminated by applying the chiral
rotation in Eq. (3) to the massless quark. For some time, this was
considered a serious possibility because of the difficulties in extracting
mu/md from Chiral Perturbation Theory due to the Kaplan-Manohar
ambiguity.1 This possibility has now been ruled out by lattice simula- 1 David B. Kaplan and Aneesh V.

Manohar (May 1986). In: Phys. Rev. Lett.
56 (19), pp. 2004–2007.

tions2.3

2 R. L. Workman et al. (2022). In: PTEP
2022, p. 083C01.
3 Constantia Alexandrou et al. (2020).
In: Phys. Rev. Lett. 125.23, p. 232001.
arXiv: 2002.07802 [hep-lat].

Nelson-Bar mechanism

We know that the Standard Model is not valid up to arbitrary high
energy scales, and it needs to be extended to a new model at high
energies. It is plausible that this extended version has the CP sym-
metry built-in so the CP conservation at the QCD is just a result of
this CP symmetry. This construction is known as the Nelson-Barr
mechanism4.5 However, we know that the CP is broken in the Stan- 4 Ann Nelson (1984). In: Physics Letters

B 136.5, pp. 387–391. issn: 0370-2693.
5 S. M. Barr (July 1984). In: Phys. Rev.
Lett. 53 (4), pp. 329–332.

dard Model in weak interactions, so the challenge in constructing these
models is to generate the correct chiral structure and the CKM phase
while at the same time protect the strong sector from the breaking
effects6.7 6 Luca Vecchi (2017). In: JHEP 04,

p. 149. arXiv: 1412.3805 [hep-ph].
7 Michael Dine and Patrick Draper
(2015). In: JHEP 08, p. 132. arXiv: 1506.
05433 [hep-ph].

Solutions within QCD

There is also the possibility that the Strong CP problem is solved
within the QCD itself. It might be that the confinement can screen
the effects of the θ term so that the QCD preserves CP invariance.8 8 Gregory Gabadadze and M. Shifman

(2002). In: Int. J. Mod. Phys. A 17. Ed. by
K. A. Olive, M. A. Shifman, and M. B.
Voloshin, pp. 3689–3728. arXiv: hep-ph/
0206123.

However, this fails to provide a simultaneous solution to the U(1)A

problem.9

9 M.A. Shifman, A.I. Vainshtein, and
V.I. Zakharov (1980). In: Nuclear Physics
B 166.3, pp. 493–506. issn: 0550-3213.

2 Axion solution to the Strong CP problem

It is fair to say that by a wide margin, the most popular solution to the
Strong CP problem is using axions. To understand the essence of this
solution, it is tremendously helpful to study the energy of the QCD
vacuum state on the θ parameter.

Vacuum energy of QCD

Let E(θ) denotes the energy of the QCD ground state with the parame-
ter θ. This is related to the generating functional in the large Euclidean

https://arxiv.org/abs/2002.07802
https://arxiv.org/abs/1412.3805
https://arxiv.org/abs/1506.05433
https://arxiv.org/abs/1506.05433
https://arxiv.org/abs/hep-ph/0206123
https://arxiv.org/abs/hep-ph/0206123
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volume V4 limit as
Z(θ) = lim

V4→∞
e−E(θ)V4 . (6)

It is possible to calculate the vacuum energy by using semi-classical
approximation and the result is

E(θ) = −2Ke−8π2/g2
s cos

(
θ
)
, (7)

where K is a positive factor which is calculable,10 but it is not essential 10 Sidney Coleman (1985). “The uses
of instantons”. In: Selected Erice lectures.
Aspects of Symmetry. Cambridge Univer-
sity Press.

for the following discussion. The important point to see is that the
energy is minimized at θ = 0, i.e. at the CP-conserving value! This fact
can also be seen without relying on the semi-classical approximation
by the following. Let DG := DADqDq denotes the total QCD path
integral measure. The Euclidean generating functional is 11 11 The extra i factor at the second step of

Eq. (8) arises during the transition from
the Minkowski space to the Euclidean
space. See Lecture 6 for a reminder.

Z(θ) =
∫

DG e−SE

=
∫

DG exp

{
−1

4

∫
d4xE GG +

iθg2
s

32π2

∫
d4xE GG̃

}
=
∫

DG e−SE(Q=0)+iθQ.

(8)

We now use the fact that the path integral measure is positive definite
for a vector-like theory12 like QCD.13 Then, the generating functional 12 By vector-like we mean that the left-

and right-handed parts of the fermions
are treated on equal footing. This is
not the case, for example, in Standard
Model where the weak interactions of
left-handed fermions differ substantially
from the right-handed ones, see Lecture
7. The consequences of this for the vac-
uum energy of QCD will be explained
below.
13 C. Vafa and E. Witten (1984a). In: Nu-
clear Physics B 234.1, pp. 173–188. issn:
0550-3213.

obeys

Z(θ) =
∣∣∣∣∫ DG e−SE(Q=0)+iθQ

∣∣∣∣
≤
∫

DG
∣∣∣e−SE(Q=0)+iθQ

∣∣∣
=
∫

DG
∣∣∣e−SE(Q=0)

∣∣∣
= Z(0).

(9)

So we have derived

Z(θ) ≤ Z(0) ⇒ E(θ) ≥ E(0). (10)

This is the special case of the Vafa-Witten theorem which states that
parity cannot be broken spontaneously in QCD.14 This result is very 14 Cumrun Vafa and Edward Witten

(Aug. 1984b). In: Phys. Rev. Lett. 53 (6),
pp. 535–536.

important since it should apply even in the low energy theory where
the result in Eq. (7) no longer holds due to the inapplicability of the
semi-classical approximation. We will demonstrate this explicitly be-
low, when we discuss the axion effective Lagrangian.

Strictly speaking, the Vafa-Witten theorem does not hold in the
Standard Model. The reason is that the Standard Model is not a vector-
like theory. It is chiral theory where the left-handed and right-handed
fermions have different types of interactions. In fact, the θ parameter
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receive renormalization group corrections δθ due to the existence of
the CP-violating phase in the CKM matrix. However, it turns out that
these corrections are heavily suppressed due to a non-trivial screening
mechanism in the Standard Model15,16, and they are well below the 15 John Ellis and Mary K. Gaillard

(1979). In: Nuclear Physics B 150, pp. 141–
162. issn: 0550-3213.
16 This screening mechanism is the main
reason behind the challenge in con-
structing succesful Nelson-Barr models.

experimental sensitivity δθ ≪ 10−10.

Making θ dynamical

We have just seen that out of infinetely many QCD vacua parametrized
by the θ parameter, the one with θ = 0 has the lowest vacuum energy.
This does not explain why θ = 0 though. The reason is that θ is not
dynamical in QCD. But, if θ were dynamical, then the system dynamics
will make it vanish since in that case the energy is minimized. This
is the essence of the axion solution to the Strong CP problem. One
simply promotes θ to a dynamical field.

Let’s see how can this be done explicitly. The simplest possibility
is to use a scalar field which we denote as ϕ. The main requirement
for the axion solution to work is that this scalar field has a quasi shift
symmetry

ϕ 7→ ϕ + α fϕ, (11)

which leaves the action invariant up to an anomaly term:

δS =
αg2

s
32π2

∫
d4x GG̃. (12)

In Eq. (11), α is a real parameter, and fϕ is a energy scale that we
specify shortly. In order this requirement to be satisfied, the scalar
field Lagrangian should have the term

Lϕ ⊃ ϕ

fϕ

g2
s

32π2 GG̃. (13)

Then, we can make use of the shift symmetry in Eq. (11) by choosing
α such that the θ term is cancelled via the contribution in Eq. (12). The
Vafa-Witten theorem that we have just proved ensures that the scalar
field is minimized at the CP-conserving value, i.e. ⟨ϕ⟩ = 0, in any
vector-like theory. Thus, the Strong CP problem is solved.

Including the kinetic term, the most general Lagrangian for ϕ reads

Lϕ =
1
2
(∂ϕ)2 +

ϕ

fϕ

g2
s

32π2 GG̃ + Lint
(
∂µϕ, . . .

)
, (14)

where
(
∂ϕ

)2 :=
(
∂µϕ

)
(∂µϕ) and Lint describes interactions other than

the GG̃ interaction. Note that the latter depends only on the deriva-
tives of the axion due to the shift symmetry.

This Lagrangian is not-renormalizable due to the existence of a di-
mensionful coupling so one needs a UV completion. If we remember
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our very first lecture, Lecture 1b, it is not hard to come up with a
possible UV completion. The shift symmetry and the derivative in-
teractions are precisely properties of the Goldstone bosons that arise
from the spontaneous breaking of continuous global symmetries. The
additional requirement that the action is invariant up to the term given
in Eq. (12) implies that the global symmetry should be anomalous at
least under the QCD. The simplest choice for this global symmetry is of
course a U(1). When this symmetry is spontaneously broken around
the energy scale fϕ, there should be two degrees of freedom in the
broken phase. One is the radial mode which is heavy mr ∼ fϕ, while
the other is the angular mode which we identify as ϕ and call it as the
axion. Shortly, we will see that the ϕGG̃ term introduces a potential
for the axion, thereby gives it a non-zero mass. Therefore, the axion is
a pseudo-Nambu-Goldstone boson (pNGB). The symmetry breaking
scale fϕ is known as the axion decay constant.

Figure 1: A picture of the laundry de-
tergent where the name “axion” is in-
spired. Cropped from the picture Ax-
ions are named after a laundry deter-
gent! by Marc Buehler that is licensed
under CC BY-NC 2.0.

Historically, the existence of the global U(1) symmetry is first postu-
lated by Roberto Daniele Peccei and Helen Quinn17.18 For this reason,

17 R. D. Peccei and Helen R. Quinn
(1977b). In: Phys. Rev. Lett. 38, pp. 1440–
1443.
18 R. D. Peccei and Helen R. Quinn
(Sept. 1977a). In: Phys. Rev. D 16 (6),
pp. 1791–1797.

the U(1) symmetry is commonly referred as the Peccei-Quinn sym-
metry and denoted by U(1)PQ. The existence of the light degree of
freedom, the axion, is discovered by Frank Wilczek19 and Steven Wein-

19 Frank Wilczek (1978). In: Phys. Rev.
Lett. 40, pp. 279–282.

berg.20 The name “axion” is given by Wilczek who is inspired from a

20 Steven Weinberg (1978). In: Phys.
Rev. Lett. 40, pp. 223–226.

laundry detergent, see Figure 1.

3 Chiral Lagrangian with Axions

We see that an axion solves the Strong CP problem if it has a low-
energy coupling to QCD given by ϕGG̃. Therefore, axion is present
also in the Chiral Lagrangian. In this section, we will construct the
Chiral Lagrangian including axions. This calculation will also give us
the effective low-energy potential of the axion, and hence the axion
mass.

For simplicity we consider the two-flavor QCD with the definitions

q =

(
u
d

)
, q =

(
u d

)
,

qL,R =

(
uL,R

dL,R

)
, qL,R =

(
u†

L,R d†
L,R

)
.

(15)

We consider the effective Lagrangian

L =
1
2
(∂ϕ)2 +

ϕ

fϕ

g2
s

32π2 GG̃ +
1
4

g0
ϕγϕFF̃ +

∂µϕ

2 fϕ
qc0

qγµγ5q − qMqq, (16)

where Mq = diag(mu, md) is the diagonalized quark mass matrix.
We have also introduced two model-dependent couplings g0

ϕγ and

https://www.flickr.com/photos/marc_buehler/3060311674/
https://www.flickr.com/photos/marc_buehler/3060311674/
https://www.flickr.com/photos/marc_buehler/3060311674/
https://www.flickr.com/photos/marc_buehler/
https://creativecommons.org/licenses/by-nc/2.0/
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c0
q = diag(c0

u, c0
d) whose motivation will be clear shortly. The ϕGG̃

term creates a coupling between the axion and the gluons. It is more
convenient to perform a field-dependent chiral rotation of quarks to
eliminate this term. We consider the following transformation:

q 7→ exp
{

iγ5
ϕ

2 fϕ
Uϕ

}
q, (17)

where Uϕ is a generic 2 × 2 matrix acting on the quark fields. Without
loss of generality, we can choose it to be a diagonal matrix 21. Due to 21 For non-diagonal Uϕ, we can first go

to a basis where Uϕ acts on the quark
field diagonally. Such a transformation
is not anomalous, and will not generate
additional terms.

the chiral anomaly, this generates the term

−
(
Tr Uϕ

) ϕ

fϕ

g2
s

32π2 GG̃. (18)

By choosing Uϕ such that Tr Uϕ = 1, we can cancel the axion-gluon
term. However, such a transformation will also modifies other terms
in effective Lagrangian in Eq. (16):

• The mass matrix Mq is modified to

Mq 7→ Mϕ := exp
{

i
ϕ

2 fϕ
Uϕ

}
Mq exp

{
i

ϕ

2 fϕ
Uϕ

}
. (19)

• It modifies the coupling between the axion and the axial quark cur-
rent:22 22 To see this remember that under

a field-dependent axial transformation
ψ 7→ eiϵ(x)γ5 ψ, the action is transformed
as

δS =
∫

d4x
(
∂µϵ(x)

)
Jµ
5

where Jµ
5 is the axial current:

Jµ
5 = ψγµγ5ψ.

See Lecture 4 if you need to refresh your
memory. The result in Eq. (20) is a
straightforward generalization of these
results.

c0
q 7→ cq := c0

q − Uϕ. (20)

• Finally, this transformation is also anomalous under QED since
quarks have electric charges. The term generated by the anomaly
modifies the axion-photon coupling as 23

23 This is again a straightforward gener-
alization of the results that we have de-
rived in Lecture 4. The factor Nc comes
from the fact a chiral rotation to a single
quark rotates Nc numbers of color de-
grees of freedom.

g0
ϕγ 7→ gϕγ := g0

ϕγ − (2Nc)
αEM

2 fϕ
Tr
(

UϕQ2
EM

)
, (21)

where Nc = 3 is the number of colors, αEM = e2/4π is the fine-
structure constant, and QEM is the diagonal matrix with the electric
charges of the up and down quarks respectively,

QEM = diag(2/3,−1/3). (22)

After all these modifications, we can write the axion effective La-
grangian as

L =
1
2
(∂ϕ)2 +

1
4

gϕγϕFF̃ +
∂µϕ

2 fϕ
qcqγµγ5q − qMϕq. (23)

Our next task is to derive various axion properties from this. Since we
are interested in low-energy properties, Chiral Lagrangian is useful for
this task.
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Axion potential and axion mass

In Lecture 3, we have derived an expression for the mass term in Chiral
Lagrangian:

Lχ,mass =
µ

4
f 2
π

[
Tr
(

Σ† M
)
+ Tr

(
M†Σ

)]
, (24)

where for two-flavor QCD, Σ reads

Σ = exp
{

2i
πa

fπ
τa
}

= exp

{
i
fπ

(
π0

√
2π−

√
2π+ −π0

)}
. (25)

For the calculation it is useful to know the identity:

Σ = 1 cos
π

fπ
+

iσaπa

π
sin

π

fπ
, (26)

where 1 is the 2 × 2 identity matrix, and we have defined

π :=
√
(π0)2 + 2π−π+. (27)

Then setting M = Mϕ in Eq. (24) where Mϕ is given by Eq. (19) yields
to a combined potential for the axion and the pions:

V(ϕ, πa) = − m2
π f 2

π

2(mu + md)

{[
mu cos

(
Uu

ϕ
ϕ

fϕ

)
+ md cos

(
Ud

ϕ
ϕ

fϕ

)]
cos
(

π

fπ

)

+
π0

π

[
mu sin

(
Uu

ϕ
ϕ

fϕ

)
− md sin

(
Ud

ϕ
ϕ

fϕ

)]
sin
(

π

fπ

)}
,

(28)

where Uu
ϕ and Ud

ϕ are the diagonal components of Uϕ, and we have replaced the µ with the pion mass via

m2
π =

µ

2
(mu + md). (29)

For generic values of Uu
ϕ and Ud

ϕ, the potential in Eq. (28) contains a mass mixing between the axion and
the neutral pion π0. This mixing can be removed by choosing Uu

ϕ and Ud
ϕ such that Uu

ϕmu − Ud
ϕmd = 0. This

condition together with Tr Uϕ = 1 fixes these terms to be

Uu
ϕ =

md
mu + md

and Ud
ϕ =

mu

mu + md
. (30)

Moreover, it is easy to check the potential in Eq. (28) when all the pions fields vanish which implies all the
pions have vanishing VEV as expected. Then, on the pion ground state πa = 0 we can substitute Eq. (30)
into Eq. (28) and expand the potential around ϕ/ fϕ = 0 to get

V(ϕ) := V(ϕ, πa = 0) = −m2
π f 2

π +
1
2

m2
π f 2

π

f 2
ϕ

mumd
(mu + md)2 ϕ2 +O

((
ϕ

fϕ

)4
)

. (31)
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From this, we can directly read off the axion mass as

mϕ =
mπ fπ

fϕ

√
mumd

mu + md
≃ 5.7

(
1012 GeV

fϕ

)
µeV. (32)

We see that the QCD scale ΛQCD ∼
√

mπ fπ determines a key relation
between the axion mass and the axion decay constant. As we shall
see at the end of this lecture, this is the property that distinguishes
between the QCD axion and an Axion-Like-Particle (ALP).

Even though the choice of the matrix Uϕ according to Eq. (30) is
useful to obtain the axion mass, it is not convenient to describe the
properties of the axion-pion potential away from the minimum. For
the latter, a more convenient choice is

Uϕ = diag
(

1
2

,
1
2

)
. (33)

Plugging this into Eq. (28) and setting π± = 0 yields a potential for
the axion and the neutral pion:24 24 Giovanni Grilli di Cortona et al.

(2016). In: JHEP 01, p. 034. arXiv: 1511.
02867 [hep-ph].

V(ϕ, π0) = −m2
π f 2

π

√
1 − 4mumd

(mu + md)2 sin2
(

ϕ

2 fϕ

)
cos
(

π0

fπ
− φϕ

)
,

(34)
where

tan φϕ :=
mu − md
mu + md

tan
(

ϕ

2 fϕ

)
. (35)

This form of the potential makes is manifest that the global minimum
is at (ϕ, π0) = (0, 0), and there is a potential valley at πa = φϕ fπ . At
this valley, the axion potential reads

V(ϕ) = −m2
π f 2

π

√
1 − 4mumd

(mu + md)2 sin2
(

ϕ

2 fϕ

)
. (36)

By expanding this potential around ϕ = 0, one can check that it gives
the same axion mass as in Eq. (32), and also the coefficients of the
O
(
ϕ4) terms agree precisely.

Axion-pion coupling

To obtain the couplings between the axion and the pions, we need to
consider the axial quark current which can conveniently be decom-
posed as

qγµγ5q =
1
2

Tr
(
cq
)
qγµγ5q︸ ︷︷ ︸

iso-singlet

+
1
2

Tr
(
cqσa)qγµγ5σaq︸ ︷︷ ︸

iso-triplet

, (37)

https://arxiv.org/abs/1511.02867
https://arxiv.org/abs/1511.02867
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where we have used the identity

(σa)ij(σ
a)kl = 2δilδkj − δijδkl . (38)

The prefix “iso-” stands for the isospin which is the residual SU(2)V

symmetry that survives the chiral symmetry breaking

SU(2)L ⊗ SU(2)R → SU(2)V . (39)

The terms singlet and triplet denotes how the corresponding terms
transform under the isospin. The first term transforms as a scalar,
hence it is a singlet, while the second term transforms as a three-
dimensional vector, hence it is a triplet. Under the isospin, pions
π0, π± form a triplet, so to obtain the coupling between the axions
and the pions it suffices to consider only the iso-triplet term in Eq.
(37).

Now we need to write the Chiral Lagrangian including the term
that corresponds to this iso-triplet term. Including the kinetic term for
the pions, the chiral Lagrangian now reads25

25 In general, the regular derivatives in
the kinetic term of Eq. (40) should be
replaced with covariant derivatives such
that

∂µΣ → DµΣ = ∂µΣ + ieAµ[Q, Σ],

where Q = diag (2/3,−1/3) is the
quark electric charge matrix, in order to
derive electromagnetic couplings of the
pions. We are omitting these since they
are not relevant to our discussion of the
axion couplings.Lχ =

f 2
π

4
Tr
[(

∂µΣ†
)(

∂µΣ
)]

+ Lχ,mass +
∂µϕ

2 fϕ

1
2

Tr
(
cqσa)Jµ

a , (40)

where Lχ,mass is given by (24), and Jµ
a is yet to be determined. Note

that the qγµγ5σaq is nothing but the Noether current that arise from an
SU(2) axial transformation to quarks26. In the chiral Lagrangian, the 26 To show this remember that a generic

SU(2)L ⊗ SU(2)R transformation to
quarks can be represented as

exp{iαaσa + γ5βaσa}

where the axial transformations form a
subset where αa = 0. See Lecture 3 for
a reminder. Then, the Noether current
can be derived by using the quark kinetic
term iq /Dq.

term Jµ
a should play the same role. Thus, it can be determined from

the axial SU(2) current derived from the Lagrangian in Eq. (40). The
result is

Jµ
a =

i
2

f 2
π Tr

[
σa
(

Σ∂µΣ† − Σ†∂µΣ
)]

. (41)

This is called the pion iso-triplet axial-vector current. Expanding it
yields

∂µϕ

2 fϕ

1
2

Tr
(
cqσa)Jµ

a ≃− 1
2

(
md − mu

mu + md
+ c0

d − c0
u

)
fπ

fϕ
∂µϕ∂µπ0

+
1
3

(
md − mu

mu + md
+ c0

d − c0
u

)
∂µϕ

fπ fϕ

(
2∂µπ0π+π− − π0∂µπ+π− − π0π+∂µπ−

) (42)

The first term introduces a kinetic mixing of the order of

ϵ = −1
2

(
md − mu

md + mu
+ c0

d − c0
u

)
fπ

fϕ
≪ 1 (43)

which can be neglected. The second term gives the axion-pion cou-
pling:

Cϕπ = −1
3

(
c0

u − c0
d −

md − mu

mu + md

)
. (44)
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Axion-Photon coupling

Using the choice

Uu
ϕ =

md
mu + md

, Ud
ϕ =

mu

mu + md
(45)

to ensure no axion-pion mass mixing we find the axion-photon cou-
pling as

gϕγ = g0
ϕγ − (2Nc)

αem

2π fϕ
Tr
(

UϕQ2
em

)
= g0

ϕγ − αem

2π fϕ

(
2
3

4md + mu

mu + md

)
.

(46)

Axion-nucleon coupling

At low energy one can introduce nucleon as a iso-spin doublet:

N =

(
p
n

)
, (47)

where p and n stands for the proton and the neutron respectively. The
axion-nucleon coupling can be defined in an analogous way to the
axion-quark current:27 27 Grilli di Cortona et al., “The QCD

axion, precisely”.
∂µϕ

2 fϕ
NCϕNγµγ5N , CϕN = diag

(
Cϕp, Cϕn

)
, (48)

where

Cϕp = c0
u∆u + c0

d∆d −
(

md
mu + md

∆u +
mu

mu + md
∆d
)

, (49)

Cϕn = c0
d∆u + c0

u∆d −
(

mu

mu + md
∆u +

md
mu + md

∆d
)

. (50)
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