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In the lectures so far, we have derived two important non-trivial re-
sults:

1. The non-trivial vacuum structure of QCD requires us to add an
additional term to the QCD Lagrangian which is the θ-term:

LQCD = −1
4

Ga
µνGa µν +

θg2
s

32π2 Ga
µνG̃a µν. (1)

2. Under a chiral transformation with a single quark q 7→ eiαγ5 q, the
path fermion path integral measure is not invariant, and as a result
the QCD Lagrangian transforms as, see Lecture 4,

LQCD 7→ LQCD − αg2
s

16π2 Ga
µνG̃a µν. (2)

In this lecture we will combine these two results and state precisely
the Strong CP problem.

1 Quark masses in the Standard Model

Electroweak symmetry breaking

Recall that the Standard Model (SM) is based on the gauge group

SU(3)C ⊗ SU(2)EW ⊗ U(1)Y,

where C, EW and Y stands for color, electroweak, and hypercharge
respectively. The fermion masses are generated via the Electroweak
symmetry breaking where the subgroup SU(2)EW ⊗ U(1)Y is sponta-
neously broken to U(1)EM where the latter stands for the usual elec-
tromagnetism. Note that this is a phenomenon where a gauge (local)
symmetry is spontaneously broken which is quite different to the phe-
nomena that we have studied in the beginning of the course where the
broken symmetries were global.

The gauge group SU(2)EW ⊗ U(1)Y describes the Electroweak The-
ory which unifies the weak interactions and the electromagnetism. The

SU(2) part consists of three gauge bosons
{

Wa
µ

}3

a=1
where U(1)Y has

Bµ. For the electroweak symmetry breaking to occur, one also needs
the Higgs multiplet H which is a complex doublet that transforms
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under the fundamental of SU(2)EW and has hypercharge + 1
2

1. The 1 Hypercharge is the quantum number
corresponding to the U(1)Y gauge sym-
metry.

Lagrangian is

LEW = −1
4

Wa
µνWa µν − 1

4
BµνBµν + (DµH)†(Dµ H)− V(H† H), (3)

where Wa
µν and Bµν are field strengths for the SU(2)EW and U(1)Y

gauge bosons respectively. The covariant derivative is given by2 2 In Eq. (4),
{

Wa
µ

}
and Bµ are the gauge

bosons of SU(2)EW and U(1)Y respec-
tively.DµH =

(
∂µ − igWa

µτa − 1
2

g′Bµ

)
H, (4)

where g and g′ are the gauge couplings for the SU(2)EW and U(1)Y

respectively, {τa} are the SU(2) generators3, and the coefficient in front 3 Recall that these can be written in terms
of Pauli matrices as τa = σa/2.of the Bµ term comes from the hypercharge of the Higgs doublet.

The potential V(H† H) is such that the Higgs doublet obtains a VEV
which without loss of generality can be chosen as

⟨H⟩ = v√
2

(
0
1

)
, (5)

where v ≃ 250 GeV. Like we have done in the global symmetry break-
ing case, we can write the Higgs doublet around this VEV as

H =
1√
2

exp
{

2i
πaτa

v

}(
0

v + h

)
, (6)

where h is a scalar excitation which will be identified with the Higgs
particle. Remember that in the case of spontaneous breaking of a
global symmetry, {πa} were the Goldstone bosons. The transforma-
tion law of the scalar field that gets a VEV under the broken symmetry
determine the transformation of the Goldstone bosons. The situation
here is very different. The broken symmetry is a gauge symmetry. So
the resulting transformation law for {πa} describes a gauge redun-
dancy4 We can make use of this gauge freedom to set πa = 0. This is 4 This is in contrast to the previous case

where the transformation law dictated
the physical properties of the Goldstone
bosons, i.e. the fact they are massless,
and have derivative couplings.

called the Unitary gauge. This choice is very convenient in the study
of spontaneous breaking of gauge symmetries since it removes the ki-
netic mixing between π’s and the gauge bosons.

Using Eqs. (4) and (6) with πa = 0 one finds

(DµH)†(DµH
)
=

g2v2

8

[
W1

µW1 µ + W2
µW2 µ

+

(
g′

g
Bµ − W3 µ

)(
g′

g
Bµ − W3

µ

)
+ h terms

]
,

(7)

where we have neglected the h-dependent terms for now. This result
shows that the gauge bosons W3

µ and Bµ mix with each other. To find
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the spectrum we need to diagonalize the mass terms. This can be
achieved by defining

Zµ := cos θwW3
µ − sin θwBµ and Aµ := sin θwW3

µ + cos θwBµ, (8)

with

tan θw :=
g′

g
. (9)

so that

Bµ = cos θw Aµ − sin θwZµ and W3
µ = sin θw Aµ + cos θwZµ. (10)

Then, with a little bit of algebra one can show that the Lagrangian in
Eq. (3) contains terms like

LEW ⊃ −1
4

FµνFµν − 1
4

ZµνZµν +
1
2

m2
ZZµZµ, mZ =

gv
2 cos θw

, (11)

where Fµν = ∂µ Aν − ∂ν Aµ and Zµν = ∂µZν − ∂νZµ. Here, Aµ is
the photon of electromagnetism, while Zµ is a massive spin-1 boson
known as the Z-boson. From Eq. (7) it is easy to see that the elec-
troweak bosons W1

µ and W2
µ also become massive. It is more conve-

nient to define
W±

µ :=
1√
2

(
W1

µ ∓ W2
µ

)
, (12)

where W+
µ and W−

µ refer to the eigenstates which are charged posi-
tively and negatively under the electromagnetism. They contribute to
the Lagrangian via

L ⊃ −1
2

(
∂µW+

ν − ∂νW−
µ

)(
∂µW+ ν − ∂νW− µ

)
+ m2

WW+
µ W− µ. (13)

These are the W bosons of the Standard Model.
We see that as a result of spontaneous symmetry breaking, three

of the four gauge bosons acquire masses. A fundamental result of
the Quantum Field Theory states that the massless particles have two
degrees of freedom independent of their spins, while the number of
degrees of freedom in massive particles is 2s + 1 where s is the spin.
So, when the gauge symmetry is spontaneously broken, the W and
the Z bosons should acquire an additional degree of freedom. This
comes from the complex Higgs doublet which had four degrees of
freedom before the symmetry breaking. Its three degrees of freedom
are transferred to the gauge bosons while the remaining degree of
freedom is the scalar excitation h in Eq. (6) which is nothing but the
Higgs boson of the Standard Model. A common way to explain this
phenomenon is to say that the gauge bosons eat the degrees of freedom
of the Higgs doublet to become massive.
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Fermions in the Standard Model

The theory of electroweak interactions is chiral and maximally par-
ity violating since the SU(2)EW gauge bosons only couple to the left-
handed fermions. This is just an observational fact which cannot be
explained in the Standard Model.

The above statement means that the left-handed fermions should
form doublets that transform under the fundamental representation
of SU(2)EW . Among these are the lepton doublets

Li =

{(
νeL

eL

)
,

(
νµL

µL

)
,

(
ντL

τL

)}
, (14)

where e, µ, τ stands for electron, muon, and tau respectively, and ν’s
are the corresponding neutrinos. The superscript i labels the genera-
tion. We also have the quark doublets:

Qi =

{(
uL

dL

)
,

(
cL

sL

)
,

(
tL

bL

)}
. (15)

On the other hand, the right-handed fermions are singlets under SU(2)EW

so they are represented by

ei
R = {eR, µR, τR}, ui

R = {uR, cR, tR}, di
R = {dR, sR, bR}. (16)

One needs to specify the hypercharges. These are given by

L : −1
2

, eR : −1, Q :
1
6

uR :
2
3

, dR : −1
3

, H :
1
2

(17)

Fermion masses

Now recall that a Dirac mass term for a fermion can be written as

L = m
(

ψ†
LψR + ψ†

RψL

)
. (18)

However, we cannot write this term explicitly since it breaks the SU(2)EW

gauge invariance. But, we can write a term like

Lyuk = −yLHeR + h.c., (19)

where L :=
(

ν†
eL

e†
L

)
, H is the Higgs doublet and y is a dimensionless

coupling. After the electroweak symmetry breaking, H gets a VEV and
this term becomes

Lyuk → −y
v√
2

(
e†

LeR + e†
ReL

)
. (20)
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This is a mass term for the electron where me = yv/
√

2. An interaction
of the form given in Eq. (19) is called a Yukawa interaction, and y is
called the Yukawa coupling. With terms like these, the charged leptons
electron, muon, tau, and the down-type quarks d, s, b get their masses.

In order to give up-type quarks u, c and t their masses, one uses an
interaction of the form5 5 To show that this term is SU(2)EW in-

variant one needs to remember that both
L and H transform under the fundamen-
tal representation of SU(2)EW , and in-
voke the identity

σ⊺
j σ2 + σ2σj = 0.

L ⊃ −yQH̃uR, where H̃ := iσ2H∗. (21)

Therefore, all the quark masses can be generated via the Yukawa in-
teraction

Lyuk = −Yd
ijQ

i Hdj
R − Yu

ij Q
i H̃uj

R + h.c.

→ − v√
2

(
Yd

ijQ
i
(

0
1

)
dj

R + Yu
ij Q

i
(iσ2)

(
0
1

)
uj

R + h.c.

)
(22)

where there is implicit summation over the generation indices i and j.
By introducing vectors

uL = {uL, cL, tL}, (23)

dL = {dL, sL, bL}, (24)

uR = {uR, cR, tR}, (25)

dR = {dR, sR, bR}, (26)

we can write Eq. (22) as

Lmass = − v√
2

(
d†

L Yd dR + u†
L Yu uR

)
+ h.c. , (27)

where Yu and Yd are called up and down Yukawa matrices respectively.
Note that these matrices are not diagonal in general which implies
that the mass matrix is also not diagonal. The expression in Eq. (27) is
written in the flavour basis since it is written in terms of quark flavours
u, d, s, c, b, and t.

It is possible to diagonalize the mass matrix though. In general, the
Yukawa matrices are not hermitian. However, YdY†

d and YuY†
u are. So

as a consequence of the finite dimenisonal spectral theorem they can
be diagonalized via the unitary matrices, and the resulting diagonal
matrix has only real entries. So we can write

YdY†
d = Ud M2

dU†
d and YuY†

u = Uu M2
uU†

u, (28)

where Uu and Ud are unitary, Mu and Md are diagonal matrices. With
these, we can write the Yukawa matrices as

Yd = Ud MdK†
d and Yu = Uu MuK†

u, (29)
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where Ku and Kd are again unitary matrices. With these definitions,
the mass Lagrangian in Eq. (27) takes the form

Lmass = − v√
2

(
d†

L Ud MdK†
ddR + u†

LUu MuK†
uuR

)
+ h.c. . (30)

This is still in flavour basis. To get a Lagrangian in the so-called mass
basis, we make a change of basis via

dR 7→ KddR, uR 7→ Kudu, dL 7→ UddL, uL 7→ UuuL. (31)

In this basis, the mass matrix becomes diagonal:

Lmass = −
(

md
i d†

L,idR,i + mu
i u†

L,iuR,i

)
+ h.c. , (32)

where
{

md
i

}
and

{
mu

i
}

are the elements of the diagonal matrices

vMd/
√

2 and vMu/
√

2 respectively.

Cabibbo-Kobayashi-Maskawa (CKM) matrix

The interactions of the quarks with the electroweak gauge bosons are
flavour-diagonal which means that the gauge interactions do not mix
the flavours. However, by performing the change of basis given in
Eq. (31), these couplings will also be modified. It turns out that only
charged boson couplings are modified by this change of basis, and the
modifications is encoded in the Cabibbo-Kobayashi-Maskawa (CKM)
matrix:

V := U†
uUd =

V11 V12 V13

V21 V22 V23

V31 V32 V33

 =:

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

. (33)

This matrix is a 3 × 3 complex unitary matrix, so it has 9 free parame-
ters, 3 angles and 6 phases. However, many of these parameters can be
eliminated by noting that there is still a U(1)6 global symmetry which
corresponds to separate U(1)V rotations for each of the six quarks:

dj
L 7→ eiαj dj

L , uj
L 7→ eiβ j uj

L

dj
R 7→ eiαj dj

R , uj
R 7→ eiβ j uj

R

(34)

where there is no summation over j. This would have eliminated all
the 6 phases, however if all the angles are equal αj = β j = φ, then V
does not change. Thus, only 5 phases can be eliminated this way. In
the end we are left with 3 angles, and one phase.

The standard parametrization for the CKM matrix is

V =

 c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12c23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

, (35)
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where cij := cos
(

φij
)

and sij = sin
(

φij
)
. The three angles {φ12, φ23, φ13}

are rotation angles in the ij-flavour plane. The numerical values of the
three angles and the phase are6 6 R. L. Workman et al. (2022). In: PTEP

2022, p. 083C01.

θ12 = 0.22500 ± 0.00067 = 12.892◦ ± 0.03839◦

θ23 = 0.01482+0.00085
−0.00074 = 2.39611◦+0.04870◦

−0.04240◦

θ13 = 0.00369 ± 0.00011 = 0.21142◦ ± 0.00630◦

δ = 1.144 ± 0.027 = 65.55◦ ± 1.55◦.

(36)

If the CKM matrix were real, there would be no CP violation. There-
fore, the phase δ measures the amount of CP violation.

2 Strong CP violation

In the previous section, we have seen how to diagonalize the quark
mass matrix, but we haven’t talked about the consequences of this op-
eration apart from the CKM matrix. Notice that the transformations
that we have performed, in particular the ones in Eq. (31) are chiral
meaning that right-handed and left-handed components transform in-
dependently. We know that these transformations are anomalous so
as a result the Lagrangian is modified according to Eq. (2) due to the
chiral anomaly. In this section our goal is to compute the modification
of the QCD Lagrangian coming from the diagonalization of the quark
mass matrix.

Chiral rotations with multiple generations

Let us start by deriving a result which we will be very useful shortly.
Consider the right-handed

{
ψi

R
}

and left-handed
{

ψi
L
}

Weyl fermions
where i is the generation index. Now consider the chiral rotations

ψi
R 7→ Rijψ

j
R and ψi

L 7→ Lijψ
j
L. (37)

In matrix form

ψR 7→ R ψR and ψL 7→ L ψL. (38)

Since L and R unitary, they can be diagonalized using unitary matrices.
Then we can write

ψR 7→ WRRdW†
R ψR and ψL 7→ WLLdW†

L ψL, (39)

where WR and WL are unitary, Rd and Ld are unitary and diagonal
matrices. Now perform a change of basis under which ψ⃗L 7→ ψ⃗

′
L :=

W†
Lψ⃗L and similarly for ψ⃗R. In this basis, the transformations in Eq.

(38) become
ψ⃗
′
R 7→ Rd ψ⃗

′
R and ψ⃗

′
L 7→ Ld ψ⃗

′
L. (40)
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We see that the transformations do not mix the flavors anymore. The
moral of the story is we can always go to a base where a general chiral
transformation parametrized by L and R becomes diagonal. So by
introducing the Dirac fermions

Ψi =

(
ψi

L
ψi

R

)
, (41)

for each generation, we can write the transformation law for each gen-
eration as

Ψj 7→
(

Lj
d 0

0 Rj
d

)
Ψi =

(
eilj 0
0 eirj

)
Ψj = exp

{
i

(
lj 0
0 rj

)}
Ψj, (42)

where Lj
d and Rj

d are the jth components of the Ld and Rd diagonal
matrices, with lj and rj being real.7 In order to bring this into the form 7 The components of Ld and Rd have

unity amplitudes since they are unitary.q 7→ eiαγ5 q for which we know how the Lagrangian transforms, we can
write the transformation in Eq. (42) as

Ψj 7→ exp
{

i
αj

2
γ5

}
exp

{
i
β j

2

}
Ψj, (43)

with
αj = rj − lj and β j = rj + lj. (44)

The transformation with eiβ j/2 is a vector rotation. Hence it is not
anomalous, we don’t need to deal with it.

Now from the anomaly result given in Eq. (2), we can deduce that
the change in the Lagrangian from the full transformation is

∆L = −
(

∑
j

αj

)
× g2

s
32π2 Ga

µνG̃a µν. (45)

The coefficient in front can be written as

∑
j
(rj − lj) = arg ∏

j
eirj e−ilj = arg det

(
L†

dRd

)
= arg det

(
L†R

)
. (46)

The last equality follows from the fact the diagonalization in Eq. (39) is
a similarity transformation, and similar matrices have the same deter-
minant. So we have found that the rotation given in Eq. (38) modifies
the Lagrangian by

∆L = −
g2

s θq

32π2 Ga
µνG̃a µν, θq := arg det

(
L†R

)
. (47)

Next we apply this result to quarks.
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Phase induced by the diagonalization of the quark mass matrix

We have seen that the Yukawa matrices can be expressed as

Yd = Ud MdK†
d and Yu = Uu MuK†

u, (48)

where Md and Mu are diagonal and real, and the matrices Uu,d and
Ku,d are unitary. Without loss of generality, we can also express them
as

Yd = Ud MdU†
d K̃†

d and Yu = Uu MuU†
uK̃†

u, (49)

where K̃u,d are other unitary matrices. Then, the mass Lagrangian in
Eq. (27) takes the form

Lmass = − v√
2

(
d†

L Ud MdU†
d K̃†

d dR + u†
L Uu MuU†

uK̃†
u uR

)
+ h.c. (50)

We can see that in order to go to the mass basis, we need to perform a
chiral rotation first given by

dR 7→ K̃d dR and uR 7→ K̃u uR, (51)

and then a non-chiral rotation with

dL,R 7→ Ud dL,R and uL,R 7→ Uu uL,R. (52)

The non-chiral rotation is not anomalous so it doesn’t modify the La-
grangian. The phase induced by the chiral rotations is

θq = arg det K̃dK̃u = arg det (YdYu)
−1 = − arg det YdYu, (53)

where we have used Eq. (49) and the fact that the elements of Md and
Mu are real.

Physical θ parameter

By using our recently derived result, we can write our final expression
for the θ term in the QCD:

Lθ =
θg2

s
32π2 Ga

µνG̃a µν, θ := θQCD − θq = θQCD + arg det YdYu. (54)

Here θQCD is the θ parameter of QCD that is related to the θ vacua that
we have studied in the last lecture, and θq comes from the diagonaliza-
tion of the quark mass matrix. The significance of the θ term is that it
cannot be removed by a chiral transformation. To see this explicitly we
note that in QCD the current associated to the chiral transformation is
not conserved:

∂µ Jµ
5 = 2mqq iγ5q +

g2
s

32π2 Ga
µνG̃a µν. (55)
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The first term arises due to the non-zero quark masses, while the sec-
ond term comes from the chiral anomaly. Under a chiral transforma-
tion q 7→ eiαγ5 q the Lagrangian is modified by, see Lecture 4

∆L = −α∂µ Jµ
5 = −2αmqq iγ5q − 2αg2

s
32π2 Ga

µνG̃a µν

= −qmqei2αγ5 q − 2αg2
s

32π2 Ga
µνG̃a µν.

(56)

Now we can perform a chiral rotation with α = θ/2 and this will
remove the θGG̃ term from the Lagrangian, but due to the first term
in Eq. (56) it will appear in the quark mass term

−qmqq 7→ qmq

(
1 + eiθγ5

)
q. (57)

For this reason θ becomes a physical parameter and will have an effect
on the physical phenomena as we shall see soon.

3 Strong CP Problem

We are now ready to state the Strong CP problem. The electric dipole
moment of the neutron is defined by the Hamiltonian

H = −dnE · Ŝ. (58)

A non-zero dipole moment has not been measured by any expriment
yet. The current experimental limit is8 8 C. Abel et al. (2020). In: Phys. Rev.

Lett. 124.8, p. 081803. arXiv: 2001.11966
[hep-ex].

∣∣∣dexp
n

∣∣∣ < 1.8 × 10−26 e cm (90% CL). (59)

The most precise theoretical calculation for dn based on the QCD sum
rules is9 9 Maxim Pospelov and Adam Ritz

(2000). In: Nucl. Phys. B 573, pp. 177–
200. arXiv: hep-ph/9908508.dn = 2.4(1.0)× 10−16 θ e cm = 1.2(0.5)× 10−2 θ e GeV−1. (60)

We see that the neutron electric dipole moment is proportional to the θ

parameter, hence it should be physical. Comparing Eqs. (59) and (60)
yields the bound

∣∣θ∣∣ ≲ 10−10. (61)

Why the θ parameter is so small if not zero is called the Strong CP
Problem.
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