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In the last lecture, we have investigated instanton solutions in Quan-
tum Mechanics. In this lecture, we will do a similar exercise for the
Yang-Mills theory. In the meantime, we also discover the non-trivial
structure of the QCD vacuum, and dig out a hidden parameter from
the theory.

1 Brief review and the notation

Let us briefly review the Yang-Mills theories and at the same time
specify the notation. The Lagrangian for a generic Yang-Mills theory
in Minkowski space reads

SYM = −1
2

∫
d4x Tr

(
GµνGµν

)
= −1

4

∫
d4x Ga

µνGa µν, (1)

where the Gµν is the Lie-Algebra valued field strength defined by

Gµν = ∂µ Aµ − ∂ν Aµ − ig
[
Aµ, Aν

]
=: Ga

µνTa, (2)

with Aµ being the Lie-algebra valued gauge potential. The latter is
written as a linear combination of the group generators {Ta}:

Aµ = Aa
µTa. (3)

The components of Gµν are

Ga
µν = ∂µ Aa

ν − ∂ν Aa
µ + g f abc Ab

µ Ac
ν, (4)

where f abc are the structure constants such that[
Ta, Tb

]
= i f abcTc. (5)

For QCD, the gauge group is G = SU(3)c, the gauge potentials
{

Aa
µ

}8

a=1
are the gluons, and Ta = λa/2 where {λa}8

a=1 are the Gell-Mann ma-
trices.

Under a gauge transformation U ∈ G, the gauge potential trans-
forms as

Aµ 7→ UAµU−1 +
i
g

U∂µU−1, (6)

while the transformation law for the field strength is

Gµν 7→ UGµνU−1. (7)
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Notice that the gauge potential has a non-trivial transformation law in
contrast to the field strength. This will play a crucial role in the coming
discussion.

Euclidean Yang-Mills action

We will need the Euclidean Yang-Mills action to study instantons. We
perform the Wick rotation via x4 := ix0. This implies

∂4 =
∂

∂x4 = −i∂0 and A4 = −iA0. (8)

From Eq. (4) we also get

Ga
i4 = −iGa

i0 and Ga i4 = iGa i0. (9)

while the other components remain unchanged. Therefore, the Yang-
Mills action in (1) in Euclidean coordinates reads

SYM = i
∫

d4xE Ga
µνGa µν. (10)

Recall that we defined the Euclidean action as SE := −iS where S is
the Wick-rotated original action. Therefore we express the Euclidean
Yang-Mills action as

SE
YM =

∫
d4xE Ga

µνGa µν. (11)

With our Minkowski metric convention (+,−,−,−), the Wick rota-
tion yields a flat metric gµν = −δµν on four-dimensional Euclidean
spacetime. Therefore, while working in Euclidean space we can forget
about the difference between the upper and lower spacetime indices
and write the Euclidean action simply as1 1 The overall minus sign vanishes be-

cause we have lowered two indices in Eq.
(12).

SE
YM =

∫
d4xE Ga

µνGa
µν. (12)

Until the end of the lecture, we will drop the E-subscript in order not
to clutter the notation. This means that every expression should be
understood as it is written in Euclidean space where µ = 1, 2, 3, 4 until
we Wick-rotate back to the Minkowski space at the end of the lecture.

2 Topology of the Yang-Mills vacuum

We want to explore the vacuum structure of the Yang-Mills theory,
and a semi-classical analysis is suitable for this task. As we have seen
in the previous lecture, the first step of semi-classical approximation
is identifying the field configurations that minimizes the Euclidean
action. From Eq. (12) we can easily see that the Euclidean Yang-Mills
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action is positive definite, therefore it is minimized when the field
strength vanishes:

Ga
µν

∣∣∣∣
VAC

= 0. (13)

This however, does not mean that the vector potentials
{

Aa
µ

}
should

also vanish. From the gauge transformation laws given in Eqs. (6) and
(7) we can see that if one starts with a zero gauge potential Aµ = 0
and apply a gauge transformation U ∈ G, the resulting field strength
still vanishes but the vector potential becomes

Aµ

∣∣∣∣
VAC

=
i
g

U(x)∂µU−1(x). (14)

These gauge fields that can be written as a gauge transformation of
zero are called pure gauges, and they correspond to the zero-energy
states. Since these are directly related to the Yang-Mills vacuum, it
would be beneficial to have a classification for these fields which is
given by the classification of the gauge transformations U. This is
what we shall study now.

Each gauge transformation U(x) is in general a map from the Eu-
clidean space R4 to the gauge group G . We can employ the gauge free-
dom in the Yang-Mills theory and choose the temporal gauge where
we set A0 = 0. This way we can restrict ourselves to the time-
independent gauge transformations so instead of Eq. (14) we can write

A
∣∣∣∣
VAC

=
i
g

U(x)∇U−1(x). (15)

Furthermore, we want to restrict ourselves to the zero-energy states
that can be connected to each other via the tunneling transformations
for which the Euclidean action in Eq. (12) is finite. This restriction is
needed for two reasons:

1. The non-perturbative analysis we are performing relies on the semi-
classical approximation, and from the previous lecture we know
that the only the field configurations with finite Euclidean action
have non-zero contribution in the semi-classical approximation.

2. The Euclidean action is related to the Hamiltonian of the system,
so a transition with infinite action will need an infinite amount of
energy. Therefore, we shall not take these states into the account.

It turns out this condition requires us to restrict the gauge transfor-
mations to the ones that approach to the identity at spatial infinity.2 2 Curtis G. Callan, Roger Dashen, and

David J. Gross (May 1978). In: Phys. Rev.
D 17 (10), pp. 2717–2763.

Namely,
U(x) → 1 as |x| → ∞. (16)
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This effectively identifies the boundary of the domain R3 with a single
point, thereby converts R3 to S3. Therefore, we can think U as a map

U : S3 → G. (17)

Winding number

We are interested in QCD so we choose G = SU(3)c . It turns out we
can further restrict SU(3)c to its subgroup SU(2) thanks to a powerful
theorem by Raoul Bott3 which states that any continuous mapping of 3 Raoul Bott (1956). eng. In: Bulletin

de la Société Mathématique de France 84,
pp. 251–281.

S3 into G can be continuously deformed into a mapping into an SU(2)
subgroup of G. Finally, any element V ∈ SU(2) can be written as

V = v0 + ivaτa such that v2
0 + vava = 1, (18)

where v0 and {va} are real parameters, and {τa} are some basis vec-
tors. This is known as the Queternion representation of SU(2) which
maps it to S3 that is also its group manifold. All this discussion shows
that we are interested in the maps

U : S3 → S3. (19)

The classification of these maps is accomplished by the homotopy the-
ory. Two such maps are said to be in different homotopy classes if they
cannot be continuously deformed into each other. This is not special to
the maps from S3 to S3. It can be applied to any map from Sm to Sm.

In order to gain some intuition, let us start with a much simpler
case which is the classification of the maps from S1 to S1, i.e. from
circle to circle. We have the following options:

→
n = 0

Figure 1: A trivial map which maps S1

into a single point.

→
n = 0

Figure 2: A mapping from S1 into a finite
subset of S1.

→
n = +1

Figure 3: A one-to-one mapping from S1

into S1.

→
n = −1

Figure 4: A one-to-one mapping from S1

into S1.

→
n = +2

→
n = −2

Figure 5: Mappings that warp S1 into S1

multiple times.

• We can map S1 into a single point, Figure 1. Let us give the number
n = 0 to this map and denote it by the trivial map.

• We can map S1 into a finite subset of S1, Figure 2. However, we can
transform this map smoothly to the trivial map so it is in the same
homotopy class.

• We can map S1 into S1 as a one-to-one fashion, Figure 3. We cannot
transform this map smoothly to the trivial map, so it is in a different
homotopy class which we label as n = +1.

• We can again define a one-to-one map but reverse the direction of
the increasing angle, Figure 4. This map cannot be deformed to nei-
ther of the previous maps so it should have a different label which
we set as n = −1.

• We can define maps which wraps the S1 at the domain more than
one times to the S1 at the target in both directions, Figure 5.
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This example shows that we can classify the maps from S1 to S1 by a
countable infinite number of equivalence classes labeled by an integer
n ∈ Z. This integer is called the winding number.

If one also defines a composition law for these equivalence classes
where the winding numbers simply add, then these homotopy classes
become elements of a group which is the homotopy group. It is labeled
by

πm(Sn), (20)

where m and n are the dimensions of the domain and target spheres
respectively. In other words, the homotopy group of the maps from
Sm to Sn is denoted by πm(Sn).

For the maps from S1 to S1 we have shown that

π1(S1) = Z. (21)

This result can be straightforwardly generalized to d dimensions as
πd(Sd). In particular,

π3(S3) = Z, (22)

which is the result that we were seeking. With this results we can
classify the zero-energy states, i.e. the pure gauges, by the winding
number of U by defining

A(n)

∣∣∣∣
VAC

=
i
g

U(n)(x)∇U−1
(n), (23)

where U(n) has the winding number n. This analysis shows that the
QCD has a countably infinite number of degenerate “candidate” vacua
{|n⟩} labeled by the winding number. We say “candidate” since the
true QCD vacuum state is neither of these as we shall see soon.

Yang-Mills Instantons

It might be confusing to learn that they are gauge transformations
that cannot be continuously converted into each other. We know that
SU(3)c is simply connected and therefore we should be able to go
from an element to another element continuously. Indeed, we can do
so. When obtaining the homotopy classification for the gauge trans-
formations, we are restricted ourselves to the gauge transformations
that are time-independent and obey the boundary condition (16). It is
possible to go from a gauge transformation U(n) to another U(m) with
different winding numbers n ̸= m, but we should abandon the pure
gauge condition. Each topological class correspond to an absolute ac-
tion minimum, and these different minima are separated by a finite,
non-zero action barrier called a sphaleron barrier.

Let us assume that we start at the pure gauge configuration A(n)
µ

∣∣∣
VAC

at x4 = −∞ with the winding number n, and will end at the pure
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gauge A(m)
µ

∣∣∣
VAC

at x4 = +∞ with the winding number m = n + 1.
The Euclidean equation of motion is

∂µ Gµν + g
[

Aµ , Gµν

]
=: Dµ Gµν = 0. (24)

The solution to this equation A( I)
µ (x) subject to the boundary condi-

tions mentioned above is called a Yang-Mills instanton. Explicitly, the
solution is4 4 A.A. Belavin et al. (1975). In: Physics

Letters B 59.1, pp. 85–87. issn: 0370-
2693.A(I)

µ (x) =
2
g

ηa
µν(xν − zν)τa

(x − z)2 + ρ2 , (25)

where {τa} are the SU(2) generators, ρ is a parameter corresponding
to the 4D size of the instanton, z denotes the instanton center, and
finally ηa

µν is the ’t Hooft symbol:5,6 5 Since we are in Euclidean space, we can
be sloppy about the location of the in-
dices.
6 With the convention ϵ1234 = +1.

ηa
µν = δaµδ4ν − δaνδ4µ + ϵaµν4. (26)

Some properties can be read directly from the solution:

• Its “spin”, i.e. its Lorentz index is coupled with the color orientation
via the ’t Hooft symbol.

• Its non-perturbative character is imprinted by the diverging weak
coupling limit.

• The solution states that the tunneling process is localized in a region
of size ρ in space and time, around its center z.

By repeating the same exercise, but now choosing m = n − 1 will
give us a Yang-Mills anti-instanton. The solution is identical to the
instanton solution in Eq. (25) except one uses the anti-self-dual ’t Hooft
symbol:7 7 The name comes from the fact that ηa

µν
is anti-self-dual, namely

ηa
µν = − 1

2
ϵµνρσηa

ρσ , (27)

whereas ηa
µν is self-dual:

ηa
µν =

1
2

ϵµνρσηa
ρσ . (28)

ηa
µν = −δaµδ4ν + δaνδ4µ + ϵaµν4. (29)

Instanton action

From the instanton solution given in Eq. (25), we can easily get the
corresponding instanton field strength as

G(I)
µν (x) = −4ρ2

g
ηa

µντa

[(x − z)2 + ρ2]
. (30)

From this one can calculate the instanton action in Euclidean space as

SI =
1
2

∫
d4x Tr G(I)

µν G(I)
µν =

8π2

g2 . (31)

The anti-instanton action turns out to be the same. In fact, for multi-
instanton solutions from n to m with |m − n| > 1, one gets SI =

|m − n|SI .8 8 This result does not apply for the com-
bination of both.We see that the action is finite and greater than zero as expected. It

also does not depend on
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• the center z of the instanton due to the translation Invariance,

• on the gauge transformation U due to the gauge Invariance,

• and on the size of the instanton ρ due to the scale invariance of the
Yang-Mills Lagrangian.

The scale invariance is a classical symmetry which gets broken in the
quantum theory by the so-called trace anomaly.

3 Quark zero modes and index theorems

Previously in Lecture 4: Anomalies, we have derived the chiral anomaly
that arises by performing a chiral transformation q 7→ eiαγ5 q to a sin-
gle quark q as

∂µ Jµ5 =
αg2

8π2 Tr Gµν G̃µν . (32)

We have also stated that Ga
µν G̃a

µν can be written as a total derivative of
the Chern-Simons current Kµ as

Ga
µν G̃a

µν = ∂µ ϵµαβγ

(
Aa

α Ga
βψ − gs

3
f abc Aa

α Ab
β Ac

γ

)
=: ∂µKµ . (33)

This implies that the integral of Eq. (32) over the Euclidean spacetime
should yield a quantity that depends only on the boundary, i.e. it
should be topological. Now, we will demonstrate this explicitly, and
in the meanwhile discover other features.

We define the following quantity in Euclidean space:

Q :=
g2

16π2

∫
d4 x Tr Gµν G̃µν , (34)

which we call as the topological charge due to the reasons that will be
clear soon. With a flashback to our anomaly lecture, we can see that
this term can be expressed as9 9 In contrast to the anomaly lecture, we

are not using the E-subscript in order not
to clutter the notation.Q = − lim

Λ→∞
∑
m

e−λ2
m/Λ2

∫
d4x ψ†

mγ5ψm, (35)

where {λm} and {ψm} are the eigenvalues and the eigenfunctions of
the Euclidean Dirac operator:

/Dψm(x) = λmψm(x). (36)

It can be shown that the Dirac operator /D anti-commutes with γ5.
Then

/Dγ5ψn(x) = −γ5 /Dψn(x) = −λnγ5ψn(x). (37)

So for each eigenfunction ψn(x) with a positive eigenvalue λn > 0,
there exists another eigenfunction

ψ−n(x) := γ5ψn(x) (38)
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with the eigenvalue
λ−n = −λn. (39)

Thus, non-vanishing eigenvalues appear in the spectrum in pairs with
opposite signs.

The remaining eigenfunctions ψ0,k(x) with eigenvalues λk = 0 are
called zero modes. They can be written in a basis, the so-called chiral
basis 10 10 The operators P+ and P− are also

used to project a Dirac fermion to its
right and left components respectively.
This is because in Weyl basis

P+ =

(
0 0
0 1

)
and P− =

(
1 0
0 0

)
.

ψ±
0,k =

1
2

(
1 ± γ5

)
ψ0,k =: P±ψ0,k, (40)

so that γ5 is diagonalized, i.e.

γ5ψ±
0,k = ±ψ±

0,k. (41)

Now we return to the evaluation of Eq. (35). Eq. (38) implies∫
d4x ψ†

mγ5ψm =
∫

d4x ψ†
mψ−m = 0, (42)

for eigenfunctions with non-zero eigenvalues since ψm and ψ†
m should

be orthogonal to each other. Thus, the sum in (35) is only over the zero
modes. By trivially evaluating the limit we get

Q = −∑
k

∫
d4x ψ†

0,kγ5ψ0,k. (43)

By using the fact that P2
± = P± and P†

± = P± we can show that

ψ†
0,kγ5ψ0,k =

(
ψ+

0,k

)†
ψ+

0,k −
(

ψ−
0,k

)†
ψ−

0,k. (44)

Therefore

Q =
n−

∑
m=1

∫
d4x

(
ψ−

0,k

)†
ψ−

0,k −
n+

∑
m=1

∫
d4x

(
ψ+

0,k

)†
ψ+

0,k

= n− − n+,

(45)

where n− and n+ are the number of the left- and right-handed zero
modes per flavor in the given background gluon field respectively. We
see that Q must be an integer and cannot change under smooth vari-
ations of the background gluon field. That’s why we named it as the
topological charge. This is a special case of the celebrated Atiyah-
Singer index theorem for the Euclidean Dirac operator.

Classification of the gluon fields with the topological charge

Since the topological charge Q can take on only integer values, and
therefore cannot change under continuous deformation of the gauge
fields, it is a very convenient quantum number to classify the gauge
fields. How do we perform this assignment?



lecture 6: instantons and the θ vacua 9

Again, we are interested in the gluon fields that have a finite Eu-
clidean action. For this, the field strength Gµν(x) should vanish faster
than 1/|x|2 at infinity. This means that the gauge fields at infinity
should approach to a pure gauge. Thus

lim
|x|2→∞

Aµ(x) =
i
g

U∂µU−1. (46)

This equation defines a map S3 → G , where for QCD, G = SU(3)c .
Again only the SU(2) subgroup is active so Eq. (46) is a map from
S3 to S3. We already know that these maps can be classified by their
homotopy classes and the homotopy group is

π3(S3) = Z. (47)

This shows that all finite-action gluons fields in Euclidean QCD fall
into topologically distinct equivalence classes labeled by the topologi-
cal charge Q. This charge is also known as the Pontryagin index of the
gauge field.

Topological charge of the instantons

It is not hard to convince ourselves that the instanton and anti-instanton
solutions we have written previously satify Eq. (46) since they inter-
polate between the pure gauges with different winding numbers. We
can even evaluate their topological charges very easily.

Since the ’t Hooft index is self-dual, see Eq. (28), we have that

G̃( I)
µν = G( I)

µν . (48)

Then the topological charge of the instanton can be calculated as

Q I =
g2

16π2

∫
d4 x Tr G( I)

µν G̃( I)
µν

=
g2

16π2

∫
d4 x Tr G( I)

µν G( I)
µν

=1

(49)

In a similar way, one can show that for the anti-instanton solution

Q I = −1. (50)

Therefore we get
Q = nfinal − ninitial, (51)

where ninitial and nfinal are the winding numbers of the initial and final
pure gauges respectively.
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4 Hidden θ parameter via the Cluster Decomposition

After the discussion of the QCD vacuum and the classification of the
gluon fields according to their topological charge, i.e. their Pontryagin
indices, we know demonstrate that these non-trivial properties forces
us to add another term to the QCD Lagrangian given in Eq. (1).

Let O [A, q, q] be an operator consisting of quarks and gluons, i.e.
the QCD fields. We assume that the vacuum expectation value (VEV)
of this operator is strongly localized in a spacetime volume V . This
assumption is reasonable, since QCD confines at low energy. This
strong localization implies that the VEV is non-zero only in a small
sub-volume V1 inside V . Using the Euclidean path integral, we can
write an expression for this VEV in the most general form as

⟨0|O|0⟩V =

∫
Dq Dq DA O [q, q, A]e−SE [q,q,A]∫

Dq Dq DA e−SE [q,q,A]
, (52)

where |0⟩ is the vacuum state which is yet to be specified. The quark
fields play no role in this discussion so we drop them from the path
integral to simplify the notation.

In the previous section we have seen that the gluon fields for which
the Euclidean action is finite are classified according to their topologi-
cal charge Q. With this in mind, we can write the VEV as

⟨0|O|0⟩ = ∑Q w(Q)
∫
DAQ O [A]e−SE [A]

∑Q w(Q)
∫
DAQ e−SE [A]

, (53)

where the sum is from Q = −∞ to Q = ∞, and w(Q) is a so far
unknown weight function. Let us split the Euclidean volume V into
two volumes:

V = V1 + V2 . (54)

This way the action factorizes as

SE [V ] = SE [V1 ] + SE [V2 ]. (55)

The corresponding topological charges are also factorized:

Q = Q1 + Q2 . (56)

Strictly speaking, even though Q needs to be an integer, Q1 and Q2

do not have to be integers. However, the gluon fields with non-zero
Q are the instantons so their topological charge densities are strongly
localized too. Therefore we can approximately take Q1 and Q2 to be
integers.
The factorization of the topological charge allows us to factorize the path integral measure as

∑
Q

w(Q)
∫

DAQ = ∑
Q

w(Q) ∑
Q1

∫
DA(V1 )

Q1 ∑
Q2

∫
DA(V2 )

Q2
× δQ,Q1+Q2

= ∑
Q1

∑
Q2

w(Q1 + Q2)
∫

DA(V1 )
Q1

∫
DA(V2 )

Q2
.

(57)
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So the VEV becomes

⟨0|O|0⟩V =
∑Q1 ∑Q2

w(Q1 + Q2)
∫
DA(V1 )

Q1
O [AQ1 ]e

−SE [V1 ]
∫
DA(V2 )

Q2
e−SE [V2 ]

∑Q1 ∑Q2
w(Q1 + Q2)

∫
DA(V1 )

Q1
e−SE [V1 ]

∫
DA(V2 )

Q2
e−SE [V2 ]

(58)

Note that we took O [AQ ] = O [AQ1 ] since O is assumed to be strongly localized in V1. This assumption
also implies that the VEV should not depend on anything in V2 as a result of the principle of cluster
decomposition. From Eq. (58), we can observe that this is possible if

w(Q1 + Q2) = w(Q1)w(Q2). (59)

This fixes the weight w(Q) to be

w(Q) = eiQθ , θ ∈ [0, 2π) and θ ∈ R, (60)

where we have introduced the θ-parameter. It should be real since the weight should be finite for all
Q ∈ (−∞, +∞). The condition in Eq. (59) ensures that all the Q2 dependent terms cancel in Eq. (58) so that
we are left with

⟨0|O|0⟩V =
∑Q1

eiQ1 θ
∫
DA(V1 )

Q1
O [AQ1 ]e

−SE [V1 ]

∑Q1
eiQ1 θ

∫
DA(V1 )

Q1
e−SE [V1 ]

. (61)

By defining
DA := ∑

Q
DAQ and S ′

E := SE − iQθ , (62)

we can write Eq. (61) as

⟨0|O|0⟩V =

∫
DA O [A] e−S′

E∫
DA e−S′

E
(63)

Hence, summing over the topological charges is equivalent to adding a θ-dependent parameter into the
action. By using the definition of Q, i.e. Eq. (34), the new action becomes explicitly

S ′
E = SE − iθ g2

16π2

∫
d4 xE Tr Gµν G̃µν . (64)

Analytically continuing back to the Minkowski space via

d4 xE = i d4 xM , Ga
i4 = −iGa

i0 , ϵ0123 = −1, (65)

we get in Minkowski space

S ′
M = SM +

θ g2

16π2

∫
d4 xM Tr Gµν G̃µν . (66)

At the end, we conclude that the correct QCD Lagrangian reads

LQCD = − 1
2

Tr Gµν Gµν +
θ g2

s
16π2 Tr Gµν G̃µν

= − 1
4

Ga
µν Ga µν +

θ g2
s

32π2 Ga
µν G̃a µν

(67)

The additional term is called the θ-term. This analysis shows that this
term has to be included in the QCD Lagrangian, and θ appears as a
hidden parameter of QCD.
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5 Theta vacua

Finally, we will define the vacuum state(s) of the QCD. We say initially
said that the “candidate” vacua are labeled by the winding number n.
The true vacuum state of QCD depends on the θ parameter and given
by11 11 R. Jackiw (Oct. 1980). In: Rev. Mod.

Phys. 52 (4), pp. 661–673.

|θ⟩ =
∞

∑
n=−∞

eiθn |n⟩ . (68)

This is called the θ vacua. Each θ value corresponds to another vacuum
state. More importantly, all these vacua are completely secluded from
each other. To see this consider the time ordered product T(O1O2 · · · )
of a set of gauge invariant operators. Let |θ1⟩ and |θ2⟩ are two vacua
with θ1 ̸= θ2. Then

⟨θ1|T(O1O2 · · · )|θ2⟩ = ∑
m,n

ei(θ2n−θ1m) ⟨m|T(O1O2 · · · )|n⟩ . (69)

The matrix element ⟨m|T(O1O2 · · · )|n⟩ depends only on the differ-
ence Q = n − m. Thus, Eq. (69) becomes

⟨θ1|T(O1O2 · · · )|θ2⟩ = ∑
n

ei(θ2−θ1)n ∑
Q

e−iθ1QF(Q)

= 2πδ(θ2 − θ1)∑
Q

e−θ1QF(Q).
(70)

This equation is zero if θ1 ̸= θ2. This property describes a super-
selection rule which indicates that θ is a fundamental parameter la-
beling the Yang-Mills vacuum, and each value of θ corresponds to a
different theory.
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