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In the last lecture, we have seen that a chiral rotation q 7→ eiαγ5 q with
a single quark q modifies the QCD Lagrangian by

LQCD 7→ LQCD − αg2
s

16π2 Ga
µνG̃a µν. (1)

But, we have also mentioned that this term can be written as a total
derivative of the so called Chern-Simons current Kµ:

Ga
µνG̃a µν = ∂µKµ = ∂µϵµαβγ

(
Aa

αGa
βψ − gs

3
f abc Aa

α Ab
β Ac

γ

)
. (2)

Therefore, we might naively think that this term is irrelevant, since it
does not contribute to the equations of motion. However, this state-
ment is true only at the perturbative level. This term crucially affects
the vacuum structure of QCD, albeit non-perturbatively. Furthermore,
this effect does not depend on whether the gauge coupling constant
gs is small or not. Non-perturbative effects can be present even if the
theory is weakly coupled.

You might be suprised about the last statement but probably you
have already encountered such an example in one of your Quantum
Mechanics courses. This is the phenomenon of transmission through
a potential barrier. Using the WKB approximation, the amplitude for
the transmission is found to be

|T (E)| = exp

{
−1

h̄

∫ x2

x1

dx
√

2(V − E)

}
[1 +O(h̄)], (3)

where E < Vmax is the energy of the particle with x1 and x2 being
the corresponding classical turning points. No matter how small the
coupling in the potential V is, this effect can not be seen in any order
of perturbation theory. Hence, it is strictly a non-perturbative phe-
nomenon.

They are phenomenon also in Quantum Field Theory that are analogs
of barrier penetration problem in Quantum Mechanics. This is the
topic of this and the next week’s lectures. At the end, we will under-
stand why the term in Eq. (2) cannot simply be ignored.

In this lecture we will be covering instantons in quantum mechanics.
Next week, we will discuss instantons in Quantum Field Theory, and
also discover the non-trivial vacuum structure of the QCD. For more
details about these topics, we refer the reader to the lectures by Sidney
Coleman,1 Hilmar Forkel,2 and David Tong.3 1 Sidney Coleman (1985). “The uses

of instantons”. In: Selected Erice lectures.
Aspects of Symmetry. Cambridge Univer-
sity Press.
2 Hilmar Forkel (Aug. 2000). In: arXiv:
hep-ph/0009136.
3 David Tong (2018). Gauge Theory.

https://arxiv.org/abs/hep-ph/0009136
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1 Instantons in Quantum Mechanics

Before dealing with the vacuum structure of the QCD, let us tackle a
simpler problem in Quantum Mechanics where we can get a feel of
instantons.

We consider a particle of unit mass in one dimension with the
Hamiltonian

H =
p2

2
+ V(x). (4)

By performing a Wick rotation, we can write the imaginary time τ := it
version of the Feynman’s sum over histories:〈

x f

∣∣∣e−HT
∣∣∣xi

〉
= N

∫
[dx]e−SE/h̄. (5)

On the left side, the states |xi⟩ and
∣∣∣x f

〉
are the initial and final states

at τ = −T/2 and τ = T/2 respectively. By inserting a complete set of
energy eigenstates {|n⟩} obeying H |n⟩ = En |n⟩ it can be written as〈

x f

∣∣∣e−HT
∣∣∣xi

〉
= ∑

n
e−EnT/h̄

〈
x f

∣∣∣n〉 ⟨n|xi⟩ . (6)

The leading term in this expansion at large T gives the eigenvalue and
the wavefunction of the lowest energy eigenstate.

On the right side of Eq. (5), there is a sum over all paths x(τ) that
obey the boundary conditions

x(−T/2) = xi and x(T/2) = x f . (7)

The factor N is a normalization factor, and the SE is the Euclidean
action:

SE =
∫ T/2

−T/2
dτ

[
1
2

(
dx
dτ

)2
+ V

]
. (8)

We see that this has the same form as the Minkowski action in physical
time, but the sign of the potential is flipped. This implies that the
minima of the potential, i.e. the classical ground states in physical
time, correspond to the maxima of the inverted potential.

In the semi-classical limit where h̄ → 0, the path integral on the
RHS in Eq. (5) is dominated by the stationary points of the Euclidean
action. The corresponding equation of motion reads

x′′(τ)− V′(x) = 0. (9)

Not suprisingly, this is equivalent to the classical equation of motion
of the particle in the inverted potential −V. In the following, we will
see what this implies.
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2 Double-well potential
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Figure 1: The double-well potential, and
its inverted version.

Consider a potential that has two minima located at x = ±a as shown
in Figure 1. These correspond to the ground states of the system. In
Euclidean time, the potential is inverted so the minima become hill
tops. Suppose a particle is initially in one of the ground states, or
hill tops in Euclidean time. What are the possible solutions to the
Euclidean equation of motion?

1. The particle can stay at the hill top where it started.

2. It can travel from one hill top to the other.

In physical time, the first solution corresponds to the situation where
a particle initially at one of the ground states and stays at the same
ground state. This is what we expect classically. The second one is
much more interesting. It corresponds to the situation where the par-
ticle tunnels from one minimum to the other. So the phenomenon of
quantum tunneling which is not a classical solution in physical time
turns out to be a classical solution in Euclidean time!

Consider a scenario where the particle starts, say, at the left hill
x = −a at T = −∞, and reaches to the right hill x = a at T = +∞. The
Euclidean “energy” of the particle

E =
1
2

(
dx
dτ

)2
− V(x) (10)

is conserved and equal to zero by assuming that V = 0 at the minima.
Thus, we can write

τ = τ1 +
∫ x

0
dx′

[
2V(x′)

]−1/2, (11)

where τ1 is an integration constant that denotes the Euclidean time
at which x vanishes. This solution is known as an instanton with the
center at τ1. Similarly, we can construct solutions that start at the right
hill x = a at T = −∞, and arrive to the left hill x = −a at T = +∞.
These are called anti-instantons. A sketch of the solutions is shown in
Figure 2.
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Figure 2: An example of the instanton
and anti-instanton solution.
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