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In the last lectures we have discussed the symmetries of the QCD with
massless quarks:

L = −1
4

Ga
µνGa µν + ∑

q
i q /Dq. (1)

We have seen that this model enjoys various symmetries. With N being
the number of massless quarks, these are

• Vector rotations individually rotate the phases of the quarks:

q 7→ eiαq, α ∈ R. (2)

• Chiral rotations act on the N-vectors constructed by the left- and
right-handed components of the quarks:

qL 7→ L qL, qR 7→ R qR, L ∈ SU(N)L and R ∈ SU(N)R. (3)

• Axial rotations are like vector rotations but they rotate the left- and
right-handed components with opposite phases:1 1 It is useful to remember that γ5 ≡ γ5

can be defined in a basis-independent
way via

γ5 := iγ0γ1γ2γ3. (4)
q 7→ eiαγ5 q. (5)

We have also briefly mentioned that the last of these symmetries is not
a real symmetry of the Lagrangian, since it is broken by the quantum
effects. This phenomenon is called an anomaly. An anomalous sym-
metry is a symmetry of the classical theory which does not survive the
quantum theory. In this lecture, we will see how this occurs, and also
show that the anomaly requires us to add another term to the QCD
Lagrangian given in Eq. (1).

We will closely follow the discussion in the lecture notes by David
Tong.2 Other resources that cover more formal concepts in anomalies 2 David Tong (2018). Gauge Theory.

are the lectures by Adel Bila,3 and the textbook by Bertlmann.4 3 Adel Bilal (Feb. 2008). In: arXiv:
0802.0634 [hep-th].
4 Reinhold A. Bertlmann (2001).
Anomalies in Quantum Field Theory. Re-
vised ed. edition. Oxford: Oxford Uni-
versity Press. 584 pp.

1 Noether theorem

We start by recalling the Noether theorem which relates the symme-
tries of the Lagrangians to conserved currents. Let L = L[ψn, ∂µψn]

denotes a Lagrangian for n fields {ψn} that are not necessarily scalars.

https://arxiv.org/abs/0802.0634
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We assume that this Lagrangian is invariant under a continuous global
symmetry parametrized by ϵ. Since the symmetry is continuous, we
can consider an infinitesmall transformation and write

ψn(x) 7→ ψ′
n(x) = ψn(x) + ϵXn(ψ). (6)

The Noether theorem can be proven in different ways. We will follow
a method which will also be useful when deriving the Ward identities
in the next section. For this, we promote the constant ϵ to a continuous
parameter ϵ(x) and write

ψn(x) 7→ ψ′
n(x) = ψn(x) + ϵ(x)Xn(ψ). (7)

Under this transformation, the Lagrangian is not necessarily invariant,
but it transforms as L → δL where

δL = ∑
n

{
∂L

∂(∂µψn)
δ
(
∂µψn

)
+

∂L
∂ψn

δψn

}
= ∑

n

{
∂L

∂(∂µψn)
∂µ(ϵ(x)Xn(ψ)) +

∂L
∂ψn

ϵ(x)Xn(ψ)

}
,

= ∑
n

{
∂L

∂(∂µψn)

(
∂µϵ
)
Xn(ψ) +

[
∂L

∂(∂µψn)
∂µXn(ψ) +

∂L
∂ψn

Xn(ψ)

]
ϵ

}
.

(8)

Now if G is a symmetry of the theory, then it can modify the La-
grangian only up to a total derivative, i.e.

δL = ϵ∂µFµ. (9)

This should be identical to Eq. (8) when ϵ is constant which means we
can replace the term inside the square bracket in Eq. (8) to arrive at

δL = ∑
n

∂L
∂(∂µψn)

(
∂µϵ
)
Xn(ψ) + ϵ∂µFµ. (10)

Then the corresponding change in the action reads5 5 When arriving to the second step in Eq.
(11) we assumed that ϵ(x) vanishes suf-
ficiently fast at infinity so that there is no
contribution from the boundary.δS =

∫
d4x δL =

∫
d4x

{
∑
n

∂L
∂(∂µψn)

(
∂µϵ
)
Xn(ψ) + ϵ∂µFµ

}

= −
∫

d4x ϵ(x)∂µ

[
∑
n

∂L
∂(∂µψn)

Xn(ψ)−Fµ

]
.

(11)

If {ψn} obey the classical equations of motion then δS = 0 for any
change δψn including the transformation (7). This implies that when
the classical equations of motion are satisfied, we have the conserva-
tion law

∂µ Jµ = 0, where Jµ = ∑
n

(
∂L

∂(∂µψn)
Xn

)
−Fµ. (12)
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This is the Noether theorem, and Jµ is called the Noether current. The
total charge Q given by

Q =
∫

d3x J0 (13)

is called the Noether charge, and is conserved because

Q̇ := ∂0Q =
∫

d3x ∂0 J0 = −
∫

d3x ∇ · J = −
∮

(J · n̂)ds = 0, (14)

assuming that the current vanishes at infinity.
This was all classical results. Let us see which of these statements

remain to be valid in the quantum theory.

2 Ward Identities in Quantum Field Theory

In this section, we will derive an analog of the Noether theorem in
Quantum Field Theory. We will consider a theory with a single scalar
field ϕ for simplicity, but the main arguments are identical for more
complex theories.

In Quantum Field Theory, all the information about a system is en-
coded in the so called generating functional given by the path integral

Z[K] =
∫

Dϕ exp
{

iS[ϕ] + i
∫

d4x K(x)ϕ(x)
}

, (15)

where K(x) is an external classical source for ϕ(x)6, and Dϕ is an in- 6 Standard notation for the current is J.
Here we are using K in order to reserve
J for the Noether current.

tegral over all field configurations, not just the ones that satisfy the
equations of motion. We will assume that there is a continuous sym-
metry transformation G whose infinitesmall form acts on ϕ as

G : ϕ 7→ ϕ′ = ϕ + ϵX(ϕ), (16)

where ϵ is an infinitesmall parameter. Now we transform ϵ to a con-
tinuous parameter ϵ(x) and write

G : ϕ 7→ ϕ′ = ϕ + ϵ(x)X(ϕ). (17)

Since this is just a field redefinition, the generating functional (15) can
be written in terms of ϕ′ as well:

Z[K] =
∫

Dϕ′ exp
{

iS[ϕ′] + i
∫

d4x K(x)ϕ′(x)
}

. (18)

From Eq. (11) we can deduce that the modified action S[ϕ′] is related
to the original action S[ϕ] via

S[ϕ′] = S[ϕ]−
∫

d4x ϵ(x)∂µ Jµ(x), (19)



lecture 4: anomalies 4

where Jµ(x) is the Noether current corresponding to the symmetry G.
Then, Eq. (18) becomes

Z[K] =
∫

Dϕ′ exp
{

iS[ϕ] + i
∫

d4x K(x)ϕ(x)
}

× exp
{
−i
∫

d4x ϵ(x)
(
∂µ Jµ(x)− K(x)X(ϕ)

)}
.

(20)

Since ϵ(x) is infinitesmall, we can expand the second expontential and
obtain

Z[K] =
∫

Dϕ′ exp
{

iS[ϕ] + i
∫

d4x K(x)ϕ(x)
}

×
[

1 − i
∫

d4x ϵ(x)
(
∂µ Jµ(x)− K(x)X(ϕ)

)]
.

(21)

To proceed further we will make the assumption that the integral mea-
sure Dϕ does not change under the symmetry transformation:

Assumption: Dϕ = Dϕ′. (22)

With this assumption, the first term in Eq. (21) is identically the gen-
erating functional Z[K]. Thus

0 =
∫

Dϕ exp
{

iS[ϕ] + i
∫

d4x Kϕ

} ∫
d4x ϵ(x)

(
∂µ Jµ − K X(ϕ)

)
. (23)

This expression should be true for all ϵ(x) so we can get rid of the
space integral and write

0 =
∫

Dϕ exp
{

iS[ϕ] + i
∫

d4x Kϕ

}(
∂µ Jµ − K X(ϕ)

)
(24)

By setting K = 0 we find∫
Dϕ exp{iS[ϕ]}

(
∂µ Jµ

)
=
〈
∂µ Jµ

〉
= 0. (25)

Differentiating Eq. (24) multiple times with respect to K and then
setting K = 0 gives the following formula:

∂µ

〈
Jµ(x)ϕ(x1)ϕ(x2) · · · ϕ(xn)

〉
= 0 if x ̸= xi. (26)

These are known as the Ward identities and they mean that ∂µ Jµ van-
ishes inside any correlation function as long as its position does not
coincide with the insertion point of other fields. This is the quantum
analog of the Noether theorem. If this identity is satisfied, then it
means that the classical symmetry surives in the quantum theory.

When deriving this result, our only non-trivial assumption was the
invariance of the measure, i.e. Eq. (22). Therefore, we expect that the
presence of an anomaly is related to the invariance of the path integral
measure. This is indeed the case, and in the next sections we will see
explicit examples of these phenomenon.
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3 The Chiral Anomaly

We start with a simpler example to discuss the anomaly. We consider
a massless Dirac fermion ψ coupled to electromagnetism. The action
is

S =
∫

d4x
(
−1

4
FµνFµν

)
+
∫

d4x i ψ /Dψ, (27)

where /D is the gauge-covariant derivative contracted with the gamma
matrices:

/D := γµDµ = γµ
(
∂µ − ieQAµ

)
, (28)

where Q is the EM charge of the fermion normalized such that Q = −1
for the electron.7 This action has two global symmetries: 7 In this notation, the fermion ψ trans-

forms under the U(1)EM gauge transfor-
mation as

ψ 7→ exp{iQα(x)}ψ.

• Vector rotations V : ψ 7→ eiϵψ with the corresponding Noether
current

Jµ
V = ψγµψ. (29)

• Axial rotations A : ψ 7→ eiϵγ5 ψ with the Noether current

Jµ
A = ψγµγ5ψ. (30)

Classically, the Noether theorem tells us

∂µ Jµ
V = 0 and ∂µ Jµ

A = 0. (31)

We want to learn which of these classical statements survive in the
quantum theory.

In the previous section we saw that whether a symmetry is still
applicable in the quantum theory is related to the invariance of the
path integral measure under the symmetry transformation. In this
case we are interested in the transformation of the fermion measure∫

DψDψ. (32)

Under an infinitesmall vector and axial transformations, ψ and ψ change
by

V : ψ 7→ ψ′ = ψ + iϵψ, V : ψ 7→ ψ
′
= ψ − iϵψ, (33)

A : ψ 7→ ψ′ = ψ + iϵγ5ψ, A : ψ 7→ ψ
′
= ψ + iϵψγ5, (34)

The crucial observation is that with the vector symmetry the trans-
formations of ψ and ψ differ by a sign, while this is not the case for
the axial symmetry A. This will be the determining factor behind the
anomaly of the axial symmetry.
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Euclidean path integral

For the anomaly calculations, it is more convenient to perform a Wick
rotation and switch to the Euclidean coordinates via introducing

x4 := −ix0 = −it. (35)

After this the metric becomes

gµν → −δµν dxµ
E dxν

E , (36)

where the subscript E denotes the Euclidean coordinates. This trans-
formation requires the introduction of the corresponding components
of the gamma matrix, partial derivative, and the vector potential via

γ4 := iγ0, ∂4 := −i∂0, A4 := −iA0. (37)

In order to distinguish between the gamma matrices in Minkowski
space we introduce the notation

γµ =
{

γ0, γ1, γ2, γ3
}

, γ
µ
E =

{
γ1, γ2, γ3, γ4

}
. (38)

In Euclidean space, all the gamma matrices are anti-hermitian, i.e.(
γ

µ
E

)†
= −γ

µ
E. (39)

However, γ5 remains Hermitian:(
γ5

E

)†
= γ5

E, (40)

where
γ5 = γ5

E = γ4γ1γ2γ3 = −γ1γ2γ3γ4. (41)

The last equality comes from anti-commuting the gamma matrices.
Under a Wick rotation the weight of the path integral eiS is trans-

formed to e−SE where SE is the Euclidean action. The latter is defined
by performing the Wick rotation in S and then setting SE := −iS.

Defining the fermion measure

We want to know how the measure given in Eq. (32) is modified under
the transformations given in Eqs. (33) and (34). But before doing this,
we need to properly define the measure. For this we consider the Dirac
operator /D for a Dirac spinor in the background of an electromagnetic
field Aµ(x). This operator satisfies an eigenvalue equation:

/Dψn = λnψn, (42)

where {λn} are the eigenvalues and {ψn} are the eigenspinors. Note
that in Euclidean space, the Dirac operator

/DE := γ
µ
EDµ, µ = 1, 2, 3, 4, (43)
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is hermitian /D†
E. This implies that the eigenvalues {λn} are real, and

the eigenspinors are orthonormal is the sense that∫
d4xE ψ†

n(x)ψm(x) = δnm, (44)

and they satifsy the completeness relation

∑
n

ψn(y)ψ†
n(x) = ∑

n
⟨y|n⟩ ⟨n|x⟩ = ⟨y|x⟩ = δ(4)(y − x). (45)

A general Dirac spinor ψ can be expressed in terms of eigenspinors as

ψ(x) = ∑
n

αnψn(x) = ∑
n

an ⟨x|n⟩ (46)

ψ(x) = ∑
n

ψ†
n(x)βn = ∑

n
⟨n|x⟩ βn. (47)

where {αn} and
{

βn
}

are Grassmann-valued numbers 8 so that the 8 Grassmann numbers are reviewed in
Appendix A.spinors can satify the anti-commutation relations. Thus, we can write

the Euclidean action for the Dirac fermions as

SE = −i
∫

d4xE ψ(x) /DEψ(x) = −i ∑
n

λnβnαn. (48)

Then, we can define the fermion measure as∫
DψDψ −→ ∏

n

∫
dβn dαn . (49)

So the Euclidean partition function for the fermions reads

ZE
f = ∏

n

∫
dβn dαn exp

{
i ∑

m
λmβmαm

}
. (50)

We now remember that the Grassmann integrations are very easy.
They are given by ∫

dα = 0,
∫

dα α = 1, (51)

and similarly for β. Furthermore the square of any Grassmann number
vanishes due to the anti-commutativity. So, we can directly evaluate
the Euclidean partition function as9 9 At the second step of Eq. (52) the extra

minus sign comes from anti-commuting
dαm and βm.

ZE
f = ∏

n

∫
dβn dαn

(
1 + i ∑

m
λmβmαm

)

= i ∏
n

∑
m

λm

(∫
dβn βm

)(∫
dαn αm

)
= ∑

n
λn =: det{i /DE}.

(52)

Note that this expression is exact. When expanding the exponential in
Eq. (50) only first two terms survive.



lecture 4: anomalies 8

Calculating the Jacobian

Let us return to the calculation of the transformation of the fermion
measure under the vector and axial rotations. We start with the axial
rotations since they will give interesting results. It is sufficient to con-
sider the transformation of ψ since the transformation of ψ is identical
for axial rotations, and differs by a sign for vector rotations.

Under an axial rotation

δψ(x) = iϵ(x)γ5ψ(x) ⇒ ∑
n

δαnψn(x) = iϵ(x)∑
m

αmγ5ψm(x). (53)

By applying the orthogonality relation (44) on both sides yields

δαn = i
∫

d4xE ϵ(x)ψ†
n(x)∑

m
γ5ψm(x)αm =: Xnmαm. (54)

We see that the transformation is linear. In matrix form

α 7→ α′ = (1+ X)α, (55)

where αm := (α)m. If we were dealing with the regular c-numbers,
then the Jacobian J of this transformation would be

J = det(1+ X), c-numbers . (56)

For Grassmann variables, we instead have10 10 See Appendix A for a derivation.

J = det−1(1+ X). (57)

For ψ, the transformation is the same so

∏
n

∫
dβn dαn = ∏

n

∫
dβ

′
n dα′n J 2. (58)

At leading order in ϵ, we can approximate the Jacobian as

J = det−1(1+ X) ≃ det(1− X) ≃ det
(

e−X
)
= e−Tr X . (59)

Explicitly,11 11 Note that the Tr in Eq. (59) gets re-
placed by the sum in Eq. (60) since
Tr X = ∑n Xnn.

J = exp

{
−i
∫

d4xE ϵ(x)∑
n

ψ†
n(x)γ5ψn(x)

}
. (60)

What remains left is to calculate this Jacobian.
Before proceeding with the evaluation of Eq. (60) let us briefly

mention what will be different for vector transformations. Following
similar steps it is straightforward to show that for the vector trans-
formation, the Jacobian factors for ψ and ψ reads det−1(1 + Y) and
det−1(1 − Y) respectively, where Y is same as X except that the γ5
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term is absent. The opposite sign is a direct consequence of the oppo-
site sign in the infinitesmall transformations given in Eq. (33). There-
fore, the combined Jacobian factor for the vector transformation

JV = det−1(1 + Y)det−1(1 − Y) ≃ det(1 + Y)det(1 − Y) ≃ 1+O(ϵ2)

(61)
is equal to the identity matrix at leading order in ϵ. This is sufficient in
order not to contribute to the Ward identities, thus there is no anomaly
with respect to the vector symmetry.

Let us return to the evaluation of the Jacobian given in Eq. (60).
They are two naive guesses which we can make:

1. The infinite sum in Eq. (60) is proportional to the trace of γ5 which
is zero. Thus the Jacobian should vanish: J = 0. 12 12 To see this take ∑n ψn(x)γ5ψn(x), inte-

grate over d4x, and use the completeness
relation (44).2. In Eq. (60) we are summing over an infinite amount of modes at

each point in space. There is no hope that the sum will converge, so
J = ∞.

Of course, in reality both of these will play against each other, and in
the end we will obtain a finite result. To see this, our first step is to reg-
ularize the infinite sum. We need to do this in a gauge invariant way.
Since the eigenvalues {λn} of the Dirac operator are gauge invariant,
we can use them for regularization. So we write∫

d4xE ϵ(x)∑
n

ψ†
nγ5ψn = lim

Λ→∞

∫
d4xE ϵ(x)∑

n
ψ†

nγ5ψne−λ2
n/Λ2

= lim
Λ→∞

∫
d4xE ϵ(x)∑

n
ψ†

nγ5e− /D2
E/Λ2

ψn

=: lim
Λ→∞

∫
d4xE ϵ(x)WΛ

(62)

Now we take the Fourier transform of ψn via13 13 Note that the momentum space is also
Euclidean.

ψn(x) =
∫ d4k

(2π)4 eik·xψ(k), (63)

so that WΛ becomes

WΛ = ∑
n

∫ d4k d4k′

(2π)8 ψ†
n(k)e

−ik·xγ5e− /D2
E/Λ2

eik′ ·xψn(k′). (64)

Again, by integrating this over d4xE we can see that

WΛ =
∫ d4k

(2π)4 Tr
(

e−ik·xγ5e− /D2
E/Λ2

eik·x
)

. (65)

They are two useful identities that we will need in the rest of the
calculation. The first one is14 14 From now on we take Q = 1 in or-

der to not to clutter the notation. We can
always take e → eQ to generalize the re-
sults derived in this section.
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/D2
E = γ

µ
Eγν

EDµDν

=
1
2

{
γ

µ
E, γν

E

}
DµDν +

1
2

[
γ

µ
E, γν

E

]
DµDν

= DµDµ +
1
4

[
γ

µ
E, γν

E

][
Dµ, Dν

]
= DµDµ − ie

2
γ

µ
Eγν

EFµν,

(66)

while the second one reads

e−ik·xDµeik·x = Dµ + ikµ. (67)

By combining these we get15 15 In Eq. (68),
(

Dµ + ikµ

)2 is a shorthand
for (Dµ + ikµ)(Dµ + ikµ).

e−ik·xe− /D2
E/Λ2

eik·x = e−ik·x exp
{
− 1

Λ2

[
DµDµ − ie

2
γ

µ
Eγν

EFµν

]}
eik·x

= exp
{
− 1

Λ2

[(
Dµ + ikµ

)2 − ie
2

γ
µ
Eγν

EFµν

]}
.

(68)

From the Eq. (62) we have introduced the regulator Λ, we can see that
its has mass dimension one. Since we will integrate over the momen-
tum variables in Eq. (65), it will make sense to introduce the dimen-
sionless momentum k̃ := k/Λ with k2 = −kµkµ 16 and write17 16 Note that this definition comes from

the fact the metric in Euclidean space is
gµν = −δµν.
17 Note that e−k2

can be factored out at
the last line of Eq. (69) since it is propor-
tional to the identity matrix which com-
mutes with all the other elements.

e−ik·xe− /D2
E/Λ2

eik·x = exp

{
−
(

Dµ

Λ
+ ik̃µ

)2
+

ie
2Λ2 γ

µ
Eγν

EFµν

}

= exp

{
−k̃2 −

2ik̃µDµ

Λ
− D2

Λ2 +
ie

2Λ2 γ
µ
Eγν

EFµν

}

= e−k̃2
exp

{
−

2ik̃µDµ

Λ
− D2

Λ2 +
ie

2Λ2 γ
µ
Eγν

EFµν

}
.

(69)

Now, Eq. (65) takes the form

WΛ = Λ4
∫ d4k̃

(2π)4 e−k̃2
Tr

(
γ5 exp

{
−

2ik̃µDµ

Λ
− D2

Λ2 +
ie

2Λ2 γ
µ
Eγν

EFµν

})
(70)

Expanding the exponentials will give a quite complicated expression,
however we need to keep only the terms that will survive once we take
the Λ → ∞ limit. Since introducing dimensionless momenta did bring
a factor of Λ4 into the measure of the momentum integral, we only
need to keep the terms up to order Λ−4.

We will also take the trace, so we also need to be aware of the
gamma matrix structure. Most of the products involving gamma ma-
trices with γ5 have vanishing trace except

Tr
(

γ5γ
µ
Eγν

Eγ
ρ
Eγσ

E

)
= −4ϵµνρσ, (71)

with the convention ϵ1234 = ϵ1230 = +1. Thus, only terms from Eq.
(70) that will survive the Λ → ∞ limit are the second term of Eq. (66),
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and the exponential e−k̃/2. In the end we get

W := lim
Λ→∞

WΛ =
∫ d4k̃

(2π)4 e−k̃2
(

e2

2
ϵµνρσFµνFρσ

)
=

e2

32π2 ϵµνρσFµνFρσ.

(72)

Then, from the Eq. (60) we arrive at the final result for the Jacobian:

J = exp
{
−i
∫

d4xE ϵ(x)
e2

32π2 ϵµνρσFµνFρσ

}
. (73)

Non-conservation of the axial current

Now we have all the information to show that the axial current Jµ
A

is not conserved in the quantum theory. For this, we start with the
analog of Eq. (21) in Euclidean space with the Dirac fermions:18 18 On the second line of Eq. (76) the

term ∂µ Jµ
A comes with the same sign

and the factor of i even in the Euclidean
space due to the fact that the path in-
tegral weight for fermions has the same
form both in Minkowski and Euclidean
spaces, namely

eiS = exp
{∫

d4x i ψ /Dψ

}
, (74)

and

e−SE = exp
{

d4xE i ψ /DEψ
}

. (75)

ZE[K, K] =
∫

Dψ
′Dψ′ exp

{
−SE[ψ, ψ] +

∫
d4xE

(
Kψ + Kψ

)}
×
[

1 − i
∫

d4xE ϵ(x)
(

∂µ Jµ
A + iKψ + iKψ

)]
,

(76)

where K and K are external sources for ψ and ψ respectively. From the
Eq. (73) we know that the modified fermion measure reads∫

Dψ
′Dψ′ =

∫
DψDψJ 2

=
∫

DψDψ exp
{

i
∫

d4xE ϵ(x)
e2

16π2 ϵµνρσFµνFρσ

}
.

(77)

By substituting this results into Eq. (76), expanding the exponential,
and setting K = 0 and K = 0 gives19 19 Precisely speaking there should also

be an expectation value on the RHS of
Eq. (78). However, in anomaly calcu-
lations the gauge fields are taken to be
background fields, hence they are clas-
sical. One can also take the gauge fields
to be dynamical. The calculation and the
results are not changed.

〈
∂µ Jµ

A

〉
=

e2

16π2 ϵµνρσFµνFρσ. (78)

We see that the axial current is no longer conserved, which means that
the axial symmetry is anomalous. In the literature, this is known as the
chiral anomaly or ABJ anomaly which is named after Adler, Bell, and
Jackiw. In this example, the fermions transform under a U(1) gauge
symmetry which is abelian. Therefore, this result is also called abelian
anomaly.

The Anomaly with Non-abelian Gauge Theories

In the previous example the gauge symmetry under which the fermions
transform was an abelian gauge symmetry. We will be eventually in-
terested in QCD where the fermions transform under the fundamental
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representation of SU(3)C which is a non-abelian symmetry. At first, it
might seem that we need to perform the whole anomaly calculation
from scratch. However, it is fairly trivial to generalize the previous
calculation for non-abelian gauge symmetries. We only need to mod-
ify Eq. (66) to

/D2 = D2 − ig
2

γ
µ
Eγν

EFa
µνTa, (79)

where g is the gauge coupling constant, {Ta} are the generators in
the fundamental representation, and Fa

µν is the gauge field strength.
Recall that the main contribution to the anomaly comes from squaring
the second term and taking the trace together with γ5. Now we also
need to take a trace over the group generators. So all the results in the
abelian case can be applied to the non-abelian case by replacing

ϵµνρσFµνFρσ → ϵµνρσFa
µνFb

ρσ Tr
(

TaTb
)
=

1
2

ϵµνρσFa
µνFa

ρσ, (80)

where we have used the convention that the generators in the funda-

mental representation are normalized by Tr
(

TaTb
)
= δab/2.

We can directly apply this to the massless QCD Lagrangian (1). By
making an axial rotation given in Eq. (5) to a single quark the path
integral measure changes by

∫
DqDq →

∫
DqDq exp

{
iα
∫

d4x
g2

s
32π2 ϵµνρσGa

µνGa
ρσ

}
=
∫

DqDq exp
{

iα
∫

d4x
g2

s
16π2 Ga

µνG̃a µν

}
.

(81)

This modification corresponds to a change in the QCD Lagrangian
given by

L 7→ L′ = L− αg2
s

16π2 Ga
µνG̃a µν. (82)

Note that this modification is purely a quantum effect and cannot be
seen from a classical analysis.

But they are more surprises. It turns out that Ga
µνG̃a µν is a total

derivative! It can be written as

Ga
µνG̃a µν = ∂µϵµαβγ

(
Aa

αGa
βψ − gs

3
f abc Aa

α Ab
β Ac

γ

)
=: ∂µKµ, (83)

where Kµ is the Chern-Simons current. So, at first sight it seems that
it should not contribute to the equations of motion, and should be
irrelevant. This is not true though. As we will see in the next lecture,
the QCD has a complicated vacuum structure, and this term will play
a vital role.
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A Grassmann numbers

In this section we will review the Grassmann numbers, also known as
anti-commuting numbers or Grassmann variables.

A set of Grassmann numbers {θi}n
i=1 obey the anti-commutation

relations: {
θi, θj

}
= θiθj + θjθi = 0, (84)

but add commutatively:

θi + θj = θj + θi. (85)

They form a basis of the so-called Grassmann algebra G over a field
where the latter is usually taken as the complex numbers. This algebra
contains an identity element 0 so that θi + 0 = θi. We can multiply a
Grassmann number with a complex number and the result will be an
element of the Grassmann algebra.

Let us consider the simplest case with n = 1. Since θ2 = 0, any
function f (θ) of the Grassmann variable can be defined by its Taylor
expansion:

f (θ) = a + bθ, a, b ∈ C, (86)

where higher order terms are identically zero. Note that this also
means that we can write any element of the Grassmann algebra as
in Eq. (86).

In physics, the Grassmann numbers are used to express the fermionic
fields. Since the path integral over them should give complex numbers,
we need to find a way to define the integral of a Grassmann number
to be a map from the Grassmann algebra to complex numbers. We
also want the integration should have similar properties as the regular
integration. In particular, the linearity∫

dθ (c f (θ) + dg(θ)) = c
∫

dθ f (θ) + d
∫

dθ g(θ), (87)

and invariance under a constant shift of the parameter,∫
dθ f (θ) =

∫
dθ f (θ + η). (88)

https://arxiv.org/abs/0802.0634
https://arxiv.org/abs/0802.0634
https://www.damtp.cam.ac.uk/user/tong/gaugetheory/gt.pdf
https://www.damtp.cam.ac.uk/user/tong/gaugetheory/gt.pdf
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The combination of these requirement implies that∫
dθ = 0 (89)

The value of
∫

dθ θ needs to be chosen, and the convention is to set
it to unity. In summary, the integration of Grassmann numbers are
defined by ∫

dθ ≡ 0,
∫

dθ θ ≡ 1. (90)

This is known as the Berezin integral. This implies that the integral of
an element of the Grassmann algebra like in Eq. (86) is defined to be∫

dθ f (θ) =
∫

dθ (a + bθ) ≡ b. (91)

We can easily generalize all these definitions to general n. Now, a
general function f ({θi}) can be written as

f ({θ}) = a + biθi +
1
2

ci1,i2 θi1 θi2 + · · ·+ 1
n!

di1···in θi1 · · · θin , (92)

where the indices are implicitly summed. The coefficients should be
anti-symmetric. Thus, the coefficient of the last term can be written as

di1···in = ϵi1···in d, (93)

where ϵi1···in is the Levi-Civita symbol with ϵ1···n = +1. The integral
of f ({θ}) is defined by20 20 Alternatively, we can take dnθ =

dθn · · ·dθ1, treat the diffentials as anti-
commuting, i.e.

{
dθi , dθj

}
= 0 ={

dθi , θj
}

, and define dθi = 0 and
dθi θj = δij to obtain Eq. (94).

∫
dnθ f ({θ}) ≡ d. (94)

This equation tells us something important. Consider we make a
change of variables from {θi} to

{
θ′i
}

via

θi = Xijθ
′
j, (95)

where X is a matrix of commuting numbers. In this new basis, Eq.
(92) becomes

f (
{

θ′
}
) = a + biXijθ

′
j + · · ·+ 1

n!
d ϵi1···in Xi1 j1 · · · Xin jn︸ ︷︷ ︸

=det X

θ′i1 · · · θ′in . (96)

Then, From Eq. (94) we learn that∫
dnθ f ({θ}) = (det X)−1

∫
dnθ′ f (

{
θ′
}
). (97)

Note that this Jacobian comes with an inverse power compared to the
case when the integration variables are usual numbers.
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