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In the last lecture, we have seen that the chiral symmetry breaking
pattern in the QCD is SU(N)L ⊗ SU(N)R −→ SU(N)V where N = 2
if we take only up and down quarks as massless, and N = 3 with the
inclusion of the strange quark. The Goldstone Theorem implies there
should be three and eight massless degrees of freedom for N = 2
and N = 3 respectively. The lightest three degrees of freedom are the
pions π0, π±, while the remaining ones are kaons K0, K0, K± and the
eta meson η. Since the chiral symmetry is only approximate in the
QCD, and explicitly broken by the non-zero quark masses, the mesons
are pseudo-Nambu-Goldstone Bosons (pNGBs).

In this lecture, we will see how to construct an effective Lagrangian
for the mesons. As we will see, we will achieve this by only utilizing
the symmetry breaking pattern.

1 Framework

Let us briefly remember the terminology that we have introduced so
far, and also introduce some object that will be useful. We grouped
the left-handed and right-handed components of the quarks and the
anti-quarks into the vectors defined by1 1 We will consider only two massless

quarks for simplicity but the whole dis-
cussion can be straightforwardly gener-
alized to the case with three massless
quarks.

qL,R :=

(
uL,R

dL,R

)
, q̃L,R :=

(
u†

L,R
d†

L,R

)
. (1)

For notational simplicity, in this lecture we will denote a SU(2)L trans-
formation by L, and a SU(2)R transformation by R. The transforma-
tions of the quark vectors are given explicitly by

qL 7→ LqL, qL,i 7→ LijqL,j (2a)

qR 7→ RqR, qR,i 7→ RijqR,j (2b)

q̃L 7→ L∗q̃L, q†
L,i 7→ L∗

ijq
†
L,j (2c)

q̃R 7→ R∗q̃R, q†
R,i 7→ R∗

ijq
†
R,j, (2d)

where qL,i := (qL)i and similarly for other vector components, and ∗
denotes the complex conjugate. The combined symmetry transforma-
tion G := SU(2)L ⊗ SU(2)R −→ SU(2)V can alternatively be expressed
as

G : q 7→ exp{i(θaTa + γ5βaTa)}q, (3)
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where q is a vector of Dirac spinors, i.e.

q :=

(
u
d

)
, q :=

(
u
d

)
, (4)

and {Ta} are the SU(2) generators. Note that in this expression the

generators act on the vector q =

(
u
d

)
while the gamma matrix γ5 acts

on the Dirac spinors u and d.
From Eq. (3) we can see that they are two sets of transformations:

1. The set of transformations parametrized by θa with βa = 0.

2. The set of transformations parametrized by βa with θa.

The first set of transformations rotate the left-handed and right-handed
spinors identically, i.e. L = R. This is precisely the vector subgroup
SU(2)V which remains unbroken even after the chiral phase transi-
tions. The second set of transformations rotate the left-handed and
right-handed spinors with opposite phases, i.e. L = R†. These are
called axial rotations and these correspond to the symmetries broken
by the quark condansate.

2 Fluctuations around the vacuum

Figure 1: A plot of the Mexican hat po-
tential with a broken phase.

Let us recall the Mexican hat potential that we have studied in the first
lecture, see Figure 1. There we had a complex scalar field enjoying a
U(1) global symmetry which is spontaneously broken. The vacuum
was infinitely degenerate, and the Goldstone boson corresponds to the
angular excitations around a choice of vacuum.

We are seeking to find a similar procedure for the chiral symmetry
breaking. For this, the first step should be defining the vacuum. We
already know that the chiral symmetry breaking corresponds to

⟨uu⟩ =
〈

dd
〉
∼ Λ3

QCD. (5)

In terms of the quark vector (5) this can be written compactly as〈
qjqi

〉
=
〈

q†
R,jqL,i

〉
+
〈

q†
L,jqi

〉
∝ δij. (6)

Since the second term is the hermitian conjugate of the first term when
i = j we can write 〈

qjqi

〉
=
〈

q†
R,jqL,i

〉
+ h.c. ∝ δij (7)

We now define a composite field Σ(x) whose matrix elements are de-
fined by

Σij(x) := q†
R,j(x)qL,i(x). (8)



lecture 3: chiral lagrangians 3

Under a G = SU(2)L ⊗ SU(2)R transformation with L ∈ SU(2)L and
R ∈ SU(2)L, the object Σ transforms as

G : Σ 7→ L Σ R†, G : Σ 7→ R Σ† L†. (9)

This results implies that Σ transforms as a bifundamental with respect
to SU(2)L ⊗ SU(2)R. The Eq. (7) tells us that the VEV of this field
should satisfy 〈

Σij
〉
+
〈

Σ†
ij

〉
∝ δij. (10)

We see that this expression remains invariant under a vector transfor-
mation with L = R. This is another statement that the vacuum is still
invariant under the SU(2)V subgroup. Moreover, Eq. (10) immediately
tells us that the ⟨Σ⟩ should be hermitian, so it should be proportional
to the identity matrix:2 2 From Eq. (10) we learn that the real

parts of the diagonal components of ⟨Σ⟩
should be identical so in general their
imaginary parts might differ. However,
we can make them identical by a vec-
tor transformation Σ 7→ LΣL−1 which
leaves the vacuum state invariant.

⟨Σ⟩ij ∝ δij ⇒ Σ0 := ⟨Σ⟩ ∝ 1. (11)

The fluctuations of Σ(x) around the VEV Σ0 correspond to the Gold-
stone bosons. Remember that the action of an unbroken symmetry
does not affect the VEV while broken symmetries shift the VEV around
the vacuum manifold. To identify the Goldstones, we need the latter.
In the end, the procedure to obtain the Goldstones can be summarized
as

1. Identify a convenient VEV, i.e. Σ0.

2. Act on that VEV with the broken group elements.

3. Promote transformation parameters to fields and identify them with
the Goldstones.

For the chiral symmetry breaking, the broken symmetries are those
with L = R†. Then, by acting on the VEV, i.e. the identity we obtain3 3 Without loss of generality we can take

Σ0 to be equal to the identity matrix by
absorbing any dimensionful constant in
Eq. (10) into the definition of Σ(x).

exp{iϵaTa} · 1 · exp{iϵaTa} = exp{2iϵaTa} (12)

We now promote the parameters {ϵa} to Goldstone fields {πa(x)} and
introduce a dimensionful quantity f so that the Goldstones have mass
dimension one. This way we define the field Σ(x)

Σ(x) := exp
{

2i
πa(x)

f
Ta
}

, (13)

which transforms as a bifundamental under the SU(2)L ⊗SU(2)R group:

Σ(x) 7→ L Σ(x) R†. (14)

At this point it will also be useful to write Σ(x) explicitly:

Σ(x) = exp

{
i
f

(
π3 π1 − iπ2

π1 + iπ2 −π3

)}
. (15)
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The physical states π0 and π± are written in terms of {πa} as

π0 = π3, π± =
1√
2

(
π1 ± π2

)
. (16)

3 How pions transform?

The transformation rules of the pions can be determined by the trans-
formation of Σ(x). Acting with an element V of the unbroken SU(2)V

symmetry yields

V Σ(x)V† =V exp
{

2i
πa

f
Ta
}

V†

=V

(
1 + 2i

πa

f
Ta +

1
2
(2i)2 πaπb

f 2 TaTb + · · ·
)

V†

= exp
{

V
(

2i
πa

f
Ta
)

V†
}

,

(17)

where the last identity follows from inserting bunch of identities V†V =

1 to the matrix expansion of the exponential. This result tells us that
the Goldstones transform under the unbroken SU(2)V symmetry as

SU(2)V : πaTa 7→ V πaTa V†. (18)

This is a linear transformation so the conclusion is that the Goldstones
transform under the unbroken symmetry in a linear way.

Let us see what happens if we act on the vacuum with the broken
generators L = R† =: A. In this case we cannot put identities as in the
previous case to obtain a simple expression for the transformed fields.
All we can say that an axial transformation sends πaTa to π′aTa where
the latter is defined through

A Σ(x) A =: exp
{

2i
π′a(x)

f
Ta
}

. (19)

This is a non-linear transformation so one says that the Goldstones
transform non-linearly under the broken symmetry. By expanding
both sides to leading order we obtain

A : πa(x)Ta 7→ πa(x)Ta + f αaTa. (20)

The second term is just a constant so an axial transformation is realized
as a shift symmetry for the Goldstones. This is precisely the symmetry
which makes the Goldstones massless.

4 Lagrangian description

Next, we want to construct a Lagrangian for Σ(x) and Σ†(x) that re-
spects the symmetries of the full SU(2)L ⊗ SU(2)R group. Note that

Σ 7→ L Σ R† ⇒ Σ† 7→ R Σ L†. (21)
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The most general invariant term with no derivatives takes the form

Tr
[
Σ†Σ . . . Σ†Σ

]
. (22)

However Σ†Σ is proportional to the identity matrix so all these terms
are just constants and independent of the Goldstones. All the terms
with an odd number of derivatives are absent due to the Lorentz in-
variance. Thus, the most general Lagrangian takes the form

L = L2 + L4 + · · · , (23)

where L2 and L4 denotes the terms with two and four derivatives.
There is a single term with two derivatives which is

L2 = b Tr
[(

∂µΣ†(x)
)(

∂µΣ(x)
)]

, (24)

where b is a constant which we shall fix shortly. We can know sub-
stitute Eq. (13) into this and perform the expansion. This way we
get

L2 =
4b
f 2 (∂

µπa(x))
(
∂µπa(x)

)
Tr
[

TaTb
]
+ · · · ,

=
2b
f 2 (∂

µπa(x))
(
∂µπa(x)

)
+ · · · ,

(25)

where we have used the orthogonality condition for the generators:

Tr
[

TaTb
]
=

1
2

δab. (26)

To canonically normalize the pion fields we need fix b = f 2/4 so the
final form of L2 is

L2 =
f 2

4
Tr
[(

∂µΣ†(x)
)(

∂µΣ(x)
)]

. (27)

This Lagrangian determines both the kinetic terms for the pions, and
also includes terms denoting the multi-pion scattering amplitudes.

5 Explicit symmetry breaking

The SU(2)L ⊗ SU(2)R symmetry is explicitly broken by the quark mass
terms:4 4 “h.c.” denotes hermitian conjugate.

∆L = −∑
q

mqqq = −∑
q

mq

(
q†

LqR

)
+ h.c. (28)

By introducing the quark mass matrix

M :=

(
mu

md

)
, (29)
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we can write this as
∆L = −q̃L · M qR. (30)

Under a SU(3)L ⊗ SU(3)R transformation

∆L → −q̃L · L† M R qR ̸= ∆L, (31)

so the Lagrangian is no longer invariant, and one says that the quark
masses break the chiral symmetry explicitly. However, if this breaking
is small, we can use a trick known as the spurion analysis to incorpo-
rate the quark masses into the Chiral Lagrangian.

Let us promote the quark mass matrix M to a field that transforms
under a SU(2)L ⊗ SU(2)R transformation such that ∆L remains invari-
ant. This requires

M 7→ L M R†. (32)

Then we can construct the Chiral Lagrangian out of Σ and M such that
under the transformations of these fields given by Eq. (9) and Eq. (32)
respectively, it remains invariant. The lowest order term that comes
from the inclusion of quark masses is given by

Lm =
1
4

µ f 2
[
Tr
(

Σ† M
)
+ Tr

(
M†Σ

)]
, (33)

where µ is a constant with mass dimension one, and the factor f 2 is
extracted for later convenience. We can know plug Eq. (13) and Eq.
(29) into this equation and perform the expansion. This way, we get

Lm = constant − µ

2
(mu + md)π

aπa. (34)

Unfortunately, this does not give us the meson masses directly due
to the unknown dimensionful constant µ. However, by generalizing
the discussion in this lecture to the spontaneous breaking of SU(3)L ⊗
SU(3)R one can eliminate the constant µ and express the quark mass
ratios in terms of the meson masses:

mu

md
=

M2
K+ − M2

K0 + 2M2
π0 − M2

π+

M2
K0 − M2

K+ + M2
π+

≃ 0.55 (35)

ms

md
=

M2
K0 + M2

K+ − M2
π+

M2
K0 − M2

K+ + M2
π+

≃ 20.1, (36)

and also the well-known Gell-Mann-Okubo formula:

4M2
K0︸ ︷︷ ︸

≃992 GeV2

= 3M2
η + M2

π︸ ︷︷ ︸
≃919 GeV2

. (37)

We see that even in the lowest order prediction of the Chiral perturba-
tion theory is roughly consistent with the known meson masses that
are provided in the handout for Lecture 2b. However, we should note
that the quark masses in these relations are whatever renormalized
masses appear in the Lagrangian (28). They are not the renormalized
MS masses that we have tabulated in Lecture 2b.
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6 The pion decay constant

We close this lecture by briefly stating how the dimensionful constant f
is determined. In the Standard Model, the electroweak interactions are
given by the gauge group SU(2)L under the left-handed components
of the up and down quarks form the first generation quark doublet.

QL :=

(
uL

dL

)
. (38)

But this doublet coincides with the first two elements of the vector qL

on which a SU(3)L transformation acts. The terminology is that the
electroweak group is weakly gauged with respect to the low energy
QCD. Here weakly means that the gauge couplings are perturbative in
all energy scales of interest.

This weakly gauging of the electroweak groups allows us to incor-
porate the weak interactions into the chiral Lagrangians. Since we are
at the low energies, it is appropriate to use the 4-Fermi theory which
is a low-energy effective theory of the weak interactions. This way it is
possible to calculate the rates for the electroweak decays of the charged
mesons π±. The most important is the decay rate for π+ → µ+νµ

which is

Γ
(
π+ → µ+νµ

)
=

G2
F f 2

4π
mπm2

µ

(
1 −

m2
µ

m2
π

)2

, (39)

where GF = 1.16 × 10−5 GeV−2, mµ is the muon mass, and mπ is
the charged pion mass. Here f is the same quantity that we have
used when defining the Goldstones. Using the measured value for the
muon lifetime

τ = Γ−1 = 2.6 × 10−8 s, (40)

one finds f as
f = 92 MeV. (41)

For this reason, f is called the pion decay constant and usually denoted
by fπ or Fπ .
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