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In this lecture, we shall give an introduction to the Chiral Symmetry
Breaking in QCD. In particular, we describe the symmetry breaking
pattern which we will use to construct the Chiral QCD Lagrangian in
the next lecture.

1 The QCD Lagrangian

We start by stating the QCD Lagrangian in the basis where the mass
matrix is diagonal:

LQCD = −1
4

Ga
µνGa µν + ∑

q

(
i q /Dq − mqqq

)
. (1)

As we shall see later, there is also the θ-term which is proportional to
Ga

µν = (1/2)ϵµνρσGa ρσ, but we will ignore it for now. Let us remember
the notations in this Lagrangian:

• q is a Dirac fermion representing one of the quarks:1 1 “u” for up, “d” for down, “s” for
strange, “c” for charm, “b” for bottom,
and “t” for top.• q is the Dirac adjoint of q given by q := q†γ0 with {γµ} being the

Gamma matrices.2 2 Our convention is to take the γ-
matrices in the Weyl representation. Ex-
plicitly

γ0 =

(
0 1
1 0

)
, γi =

(
0 σi

−σi 0

)
,

where
{

σi} are the Pauli matrices:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
,

σ3 =

(
1 0
0 −1

)

• Ga
µν is the gluon field strength given by

Ga
µν = ∂µ Aa

ν − ∂ν Aa
µ + gs f abc Ab

µ Ac
ν, (2)

where gs gauge coupling constant, i.e. the analog of the fine struc-
ture constant in QED. The eight gluons are represented by the gauge

fields
{

Aa
µ

}8

a=1
where the super-script a labels them. The structure

constants enter to this definition due to the fact that the gluons, be-
ing gauge fields, transform under the adjoint representation of the
SU(3)C where the representations of the group generators take the

form
(

Ta
adj

)bc
= −i f abc.

• The kinetic term for the quarks is

q /Dq = qγµDµq

= qiγ
µ
(

δij∂µ − igs Aa
µTa

ij

)
︸ ︷︷ ︸

=(Dµ)ij

qj, (3)
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where i and j are the color indices of the quarks, i.e. red, blue, and
green. Here {Ta} are the generators of SU(3)C in the fundamen-
tal representation. This is because the quarks, being matter fields,
transform under the fundamentel representation. The generators
are given by Ta = λa/2 where {λa} are the Gell-Mann matrices.3 3 See the handout for the Lecture 2a for

the explicit expressions.

2 Symmetries of the QCD Lagrangian with massless quarks

Now we discuss the symmetries of the Lagrangian. It is easy to see
that there is a U(1) symmetry which simply rotates the phases of the
quarks by the same amount

U(1)V : q 7→ eiαq. (4)

This is called the vector U(1) symmetry.
Without any approximation, this is all we have. But this is not very

useful since, as we shall see later, this symmetry remains unbroken
after the QCD phase transition. To make further progress, we observe
that the Lagrangian contains a much larger symmetry group when the
quark masses are set to zero. To see these symmetries more clearly, we
recall that a Dirac fermion in the Weyl basis can be written in terms of
a left-handed qL and a right-handed Weyl spinor qR as 4 4 Remember that left-handed and right-

handed spinors transform under the(
1
2 , 0
)

and
(

0, 1
2

)
representations of the

Lorentz group.q =

(
qL

qR

)
. (5)

Then, a simple calculation shows that

i q /Dq = i
(

q†
LσµDµqL + q†

RσµDµσqR

)
, (6)

where σµ =
(
1, σi) and σµ =

(
1,−σi). We can group different quarks

and anti-quarks into the vectors

qL,R :=


uL,R

dL,R
...

 and q̃L,R :=


u†

L,R
d†

L,R
...

. (7)

Then by summing over the quarks we obtain

∑
q

i q /Dq = i
(
q̃L · σµDµqL + q̃R · σµDµqR

)
. (8)

Now consider the following transformations acting on the quark vec-
tors:

UL : qL 7→ ULqL , UR : qR 7→ URqR. (9)

This is a symmetry of the Lagrangian in the massless limit if UL and
UR are unitary matrices, i.e. U†

LUL = 1 and U†
RUR = 1. If they are
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N massless quarks, these transformations are N × N unitary matri-
ces and they form the Special Unitary Group SU(N). We will denote
these symmetries as SU(N)L and SU(N)R where UL ∈ SU(N)L and
UR ∈ SU(N)R. These symmetries are called left chiral and right chiral
symmetry respectively.

Another symmetry of the Lagrangian with massless quarks is the
axial symmetry U(1)A given by

U(1)A : q 7→ eiθγ5 q, (10)

where

γ5 := iγ0γ1γ2γ3, γ5 =

(
−1 0
0 1

)
in the Weyl basis. (11)

However, this is not a true symmetry of the Lagrangian. It is bro-
ken by quantum effects called anomalies. We will discuss anomalies
extensively in the next lectures.

3 Chiral Symmetry Breaking Pattern

The QCD phase transition is realized as a result of quark bilinears qq
obtain a non-zero vacuum expectation value

⟨qq⟩ ∼ Λ3
QCD, Λ ∼ 300 MeV. (12)

So far this has not been proved from a first principle calculation in
QCD, but it is consistent with the spectrum of hadrons. We now dis-
cuss which symmetries are broken by this expectation value.

The vector symmetry U(1)V remains unbroken. Its conserved Noether
charge is the baryon number. Even though the baryon number is an
exact symmetry of the QCD even with massive quarks, it also become
anamolous once the weak interactions are included.

The axial symmetry U(1)A is broken by the expectation value. How-
ever, since it wasn’t a real symmetry to begin with, it plays no further
role.

We now discuss the most important symmetry which is the com-
bined SU(N)L ⊗ SU(N)R symmetry. By expanding (12) in terms of
Weyl fermions we get

⟨qq⟩ =
〈

q†
LqR + q†

RqL

〉
, (13)

and summing over the quarks yields

∑
q
⟨qq⟩ = ⟨q̃L · qR + q̃R · qL⟩ ̸= 0. (14)

Under the transformation (9), this is transformed to

∑
q
⟨qq⟩ 7→

〈
q̃L · U†

LURqR

〉
+
〈

q̃R · U†
RULqL

〉
. (15)
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We see that the vacuum stays invariant if

U†
LUR = 1 and U†

RUL = 1. (16)

This means that the vacuum state is not invariant anymore under in-
dependent SU(N)L and SU(N)R transformations. However, it stays in-
variant if these are related to each other via (16). The subgroup of
SU(N)L ⊗ SU(N)L under which the vacuum is invariant is another
SU(N) group 5 called the vector SU(N)V . So the symmetry breaking 5 The easiest way to see this is by looking

Eq. (16). One is free to choose either a
SU(N)L or SU(N)R rotation, but the rest
is fixed.

pattern of QCD with N massless quarks is

SU(N)L ⊗ SU(N)R −→ SU(N)V (17)

Since each SU(N) has N2 − 1 generators, the number of broken gener-
ators is

(N2 − 1)︸ ︷︷ ︸
SU(N)L

+ (N2 − 1)︸ ︷︷ ︸
SU(N)L

− (N2 − 1)︸ ︷︷ ︸
SU(N)V

= N2 − 1. (18)

Then using the Goldstone theorem, we conclude that the chiral sym-
metry breaking of QCD with N massless quarks should produce N2 −
1 NGBs.

4 QCD with Massive Quarks

Of course we know that setting all quark masses to zero is an idealiza-
tion, and in reality all quarks are massive. However, we are interested
in an effective description of QCD at energies E ≪ ΛQCD ∼ 300 MeV.
So if at least some of the quark masses are small compared to ΛQCD

we can treat them as perturbations. In this case, we can still employ the
techniques of spontaneous symmetry breaking to tell something about
the low energy theory.

Type Mass

up 2.16 MeV
down 4.67 MeV
strange 93.4 MeV
charm 1.27 GeV
bottom 4.18 GeV
top 172.69 GeV

Table 1: Quark masses according to the
Particle Data Group (PDG).

In Table 1, we list the six quark masses 6 according to the Particle 6 The masses for up, down, and strange
quarks are the MS masses where the
renormalization scale is set to µ = 2 GeV.
Check the relevant section in PDG on
how to define the masses for the heav-
ier quarks.

Data Group (PDG).7 We see that three of them, up, down, and strange,

7 R. L. Workman et al. (2022). In: PTEP
2022, p. 083C01.

are lighter than the QCD scale, while two of them, up and down, are
particularly light. The rest of them are much heavier so their masses
cannot be treated as perturbations.
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With the inclusion of the quark masses, the chiral symmetries are
no longer exact symmetries. But, if the quark masses can be treated
as perturbations, then there is an approximate chiral symmetry. The
resulting Goldstone bosons won’t be massless anymore, but they are
still light compared to the cutoff of our effective theory. In this case,
the light but massive degrees of freedom are called pseudo Nambu-
Goldstone bosons (pNGBs).

Name Symbol Mass [MeV]

Neutral Pion π0
135

Charged Pions π+, π−
140

Charged Kaons K+, K−
494

Neutral Kaons K0, K0
498

Eta meson η 548

Eta prime meson η′
958

...
...

...

Table 2: Lightest meson masses accord-
ing to the Particle Data Group (PDG).

The light degrees of freedom that arise due to the spontaneous
breaking of approximate chiral symmetry are the mesons which are
bound states of a quark and an anti-quark. We list the lightest of them
in Table 2. We know investigate whether these masses are consisten
with what we expect from the symmetry breaking.

Two massless quarks

If we take only the up and down quarks as massless and integrate out
the rest, then the symmetry breaking pattern is SU(2)L ⊗ SU(2)R −→
SU(2)V and we get 22 − 1 = 3 pNGBs. We can match these with
the pions π0, π± since they are much lighter compared to the other
mesons.

Three massless quarks

Now if we also include the strange quark, then the symmetry breaking
pattern is SU(3)L ⊗ SU(3)R −→ SU(3)V and we get 32 − 1 = 8 pNGBs.
Three of them are again the pions. Four of the remaining five bosons
are the kaons K0, K0, K±, and the eta meson η. We also see that these
are lighter compared to the next boson in the list which is the eta prime
meson η′.

5 The U(1)A Problem

In the 70s, people were not aware of the fact that the axial U(1)A sym-
metry was anomalous. Since this symmetry is also spontaneously bro-
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ken by the QCD condensate, it was expected that there should also be
a light state corresponding to the pNGB of the U(1)A symmetry. It has
also been calculated there should be an upper bound on this boson’s
mass given by 8 8 Steven Weinberg (June 1975). In: Phys.

Rev. D 11 (12), pp. 3583–3593.m2 ≤ 3m2
π . (19)

But they was no such a state and people were wondering what hap-
pened to this boson. This was called the U(1)A problem or the missing
meson problem.

The resolution of the problem lies of course in the fact that the ax-
ial symmetry is anomalous. We will revisit this once we study the
anamalies.
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