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This handout provides a brief review of Lie groups and Lie algebras
that we will use in later parts of the course.

1 Lie groups and Lie algebras

Let us recall the formal definition of a group:

Definition: A group is a set G together with a binary operation on G,
denoted by •, which takes any two group elements a, b ∈ G to form
another group element a • b ∈ G, and satisfies the group axioms:

• Associativity: a • (b • c) = (a • b) • c, ∀a, b, c ∈ G,

• Existence of identity: ∀a ∈ G ∃e ∈ G : a • e = e • a = e,

• Existence of inverse: ∀a ∈ G ∃a−1 ∈ G : a • a−1 = a−1 • a = e.

The element e is called the identity while a−1 is the inverse of a.

It is not hard to convinve ourselves that the symmetry transforma-
tions form a group where the binary operation is simply the combi-
nation of two transformations. We will be mainly interested in the
transformations that can be continuously connected to the identity.
These transformations form a Lie group which is a group but at the
same time a diffentiable manifold.

Being a differentiable manifold, the Lie group G has a tangent space
g attached to its identity element e ∈ G. This tangent space is a vector
space spanned by the basis {Ta}dim G

a=1 where dim G is the dimension
of the Lie group G. The set of basis vectors Ta are called the group
generators. At the same time g forms a Lie algebra:

Definition: A Lie algebra is a vector space g together with a bilinear
map called Lie bracket

g× g → g , (A, B) 7→ [A, B] (1)

that satisfies

• Anticommutativity: [A, B] = −[B, A],

• Jacobi identity: [A, [B, C]] + [B, [C, A]] + [C, [A, B]] = 0.
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The definition of the Lie algebra, particularly Eq. (5), implies that
we can write [

Ta, Tb
]
= i f abcTc, (2)

where f abc are called structure constants. The group is called abelian
if f abc = 0, and non-abelian otherwise. The Jacobi identity implies that
the structure constants should obey the relation

f abd f cde + f bcd f ade + f cad f bde = 0. (3)

At this point the symbol [·, ·] should be understood as an abstract
symbol denoting the Lie bracket. Soon, we will represent the group
generators as matrices and then [·, ·] will imply the usual matrix com-
mutation.

Definition: An ideal is a subalgebra h ⊂ g satisfying

[g, h] ∈ h for any g ∈ g and h ∈ h. (4)

A simple Lie algebra has no non-trivial ideals. If an algebra can
be written as the direct sum of simple Lie algebras that it is called
semi-simple. The gauge group of the Standard Model is

SU(3)c ⊗ SU(2)EW ⊗ U(1)Y

where the subscripts c, EW, and Y is for color, electro-weak, and hy-
percharge respectively. It’s Lie algebra is given by

su(3)c ⊕ su(2)EW ⊕ u(1)Y,

so the Standard Model Lie algebra is semi-simple. This is no surprise
because of the following remarkable theorems:

Theorem (Cartan): The algebras for SU(N), SO(N), Sp(N) and excep-
tional groups G2, F4, E6, E7 and E8 are the only finite dimensional
simple Lie algebras.

Theorem: All finite-dimensional representations of semisimple alge-
bras are Hermitian.

We will shortly define what a representation is. The second theorem
tells us that we can construct unitary theories based on semisimple
algebras. This is why these particular algebras play a fundamental
role in physics.

2 Representations

So far we have treated the group generators Ta as abstract objects. It is
much more convenient if we can express them in terms of objects that
we are familiar with, for example matrices. We can achieve this with
representations.
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Definition: Let g be a Lie algebra, V be a vector space V, and gl(V)

denotes the set of all linear maps to itself. A representation R is a map
R : g → gl(V) that satisfies

R([A, B]) = R(A)R(B)− R(B)R(A), ∀X, Y ∈ g. (5)

In simple terms, a representation maps the elements of a Lie algebra
to matrices in such a way the Lie bracket operation becomes matrix
commutation.

For a given Lie algebra they can be many representations. The sim-
plest non-trivial algebra is called the fundamental (defining) represen-
tation. For SU(N), the fundamental representation is a map to the set
of N × N Hermitian matrices. Thus this is a N-dimensional represen-
tation. A set of N fields that transform in the fundamental representa-
tion transform under an infinitesimal transformation as

ϕi 7→ ϕi + iαa(Ta
fund)ijϕj, (6)

where αa are real numbers. The complex conjugate fields transform
under the anti-fundamental representation:

ϕ∗
i 7→ ϕ∗

i − iαa
(

Ta
fund

)
ij

ϕ∗
j . (7)

By comparing Eqs. (10) and (11) we can see that the fundamental and
the anti-fundamental representations are related to each other by(

Ta
fund

)
= −(Ta

fund). (8)

The default representation is the fundamental one, so from now on we
drop the “fund”-subscript.

Since we will need them in the next lecture where we will discuss
the spontaneous breaking of QCD, we will explicitly write the gener-
ators Ta of SU(2) and SU(3) in the fundamental representation. For
SU(2) these are proportional to the Pauli matrices σa:

Ta =
σ2

2
. (9)

In explicit form

T1 =
1
2

(
0 1
1 0

)
, T2 =

1
2

(
0 −i
i 0

)
, T3 =

(
1 0
0 −1

)
. (10)

For SU(3), the generators are given by Ta = λa/2 where λa are Gell-
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Mann matrices:

λ1 =

0 1 0
1 0 0
0 0 0

, λ2 =

0 −i 0
i 0 0
0 0 0

, λ3 =

1 0 0
0 −1 0
0 0 0


λ4 =

0 0 1
0 0 0
1 0 0

, λ5 =

0 0 −i
0 0 0
i 0 0

, λ6 =

0 0 0
0 0 1
0 1 0

 (11)

λ7 =

0 0 0
0 0 −i
0 i 0

, λ8 =
1√
3

1 0 0
0 1 0
0 0 −2


The normalization of the SU(N) generators in the fundamental repre-
sentation is chosen such that

Tr
(

TaTb
)
=

1
2

δab. (12)

It is also possible to express the product of the SU(N) generators in
the fundamental representation by

TaTb =
1

2N
δab +

1
2

dabcTc +
i
2

f abcTc, (13)

where
dabc = 2 Tr

(
Ta
{

Tb, Tc
})

(14)

is a totally symmetric group invariant.
Another important representation is the adjoint representation. In

this case, the vector space V on which the generators are mapped is the
vector space spanned by the generators themselves. Since the number
of generators is equal to the dimension of the Lie group, the dimension
of the representation is the same as the dimension of the Lie group. For
SU(N) this is N2 − 1. The generators in the adjoint representation take
the form (

Ta
adj

)bc
= −i f abc. (15)

In SU(2) these are 3 × 3 matrices, while in SU(3) these are 8 × 8 matri-
ces.

The following statements are crucial to understand the Standard
Model:

• Matter fields transform under the fundamental representation of
a gauge group, while anti-matter fields transform under the anti-
fundamental representation. Usually these are denoted by □ and □
respectively.

• Gauge fields transform under the adjoint representation of a gauge
group. This is denoted by adj.
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3 Characterizing representations

It would be nice to have a basis-independent way of characterizing rep-
resentations. The following statement provides a good starting point:

Theorem (Schur’s Lemma): A group element that commutes with all
other group elements in any irreducible representation must be pro-
portional to the identity matrix 1.

By using the defintion of the Lie bracket (6) we can show that[
Ta

RTa
R, Tb

R

]
= i f abc{Ta

R, Tc
R} = 0, (16)

where R denotes any representation. By deriving this result we have
used the facts that the structure constants f abc are totally anti-symmetric
and the Lie bracket definition (6) is valid for any representation with
the same structure constants, i.e.[

Ta
R, Tb

R

]
= i f abcTc

R. (17)

Then the Schur’s Lemma implies that

Ta
RTa

R = C2(R) · 1, (18)

where C2(R) is called the quadratic casimir. In any representation, the
generators can be chosen such that〈

Ta
R

∣∣∣Tb
R

〉
= Tr

(
Ta

RTb
R

)
= T(R)δab, (19)

where T(R) is called the index of the representation, and we have
defined the Cartan inner product as

⟨A|B⟩ := Tr(AB). (20)

For SU(N) we get

TF =
1
2

, TA = N, (21)

where F and A stands for fundamental and adjoint representation re-
spectively. By taking Eq. (23), setting a = b and summing over a yields
the relation

C2(R)dim(R) = T(R)dim(G), (22)

where dim(R) and dim(G) are the dimensions of the Lie group and
the representation respectively. We then find

CF := C2(F) =
N2 − 1

2N
, CA := C2(A) = N. (23)

In particular, we have CF = 3/4 and CF = 4/3 for SU(2) and SU(3)
respectively. For any representation we can write

Tr
([

Ta
R, Tb

R

]
Tc

R

)
= i f abcT(R). (24)
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Since the structure constants are the same in any representation, we
can pick the fundamental and write

f abc = − i
TF

Tr
([

Ta
R, Tb

R

]
Tc

R

)
. (25)

This means that we can always replace structure constants with the
group generators. Finally, another invariant is the anomaly coefficient
A(R) defined by

Tr
(

Ta
R

{
Tb

R, Tc
R

})
=

1
2

A(R)dabc = A(R)Tr
(

Ta
{

Tb, Tc
})

. (26)
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